Ultimate limits to computation: anharmonic oscillator

被引:1
|
作者
Khorasani, Fatemeh [1 ]
Tanhayi, Mohammad Reza [1 ]
Pirmoradian, Reza [2 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Phys, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Particles & Accelerators, POB 19395-5531, Tehran, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2022年 / 137卷 / 06期
关键词
COMPLEXITY;
D O I
10.1140/epjp/s13360-022-02900-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by studies of ultimate speed of computers, we examine the question of minimum time of orthogonalization in a simple anharmonic oscillator and find an upper bound on the rate of computations. Furthermore, we investigate the growth rate of complexity of operation when the system undergoes a definite perturbation. At the phase space of the parameters, by numerical analysis, we find the critical point where beyond that the rate of complexity changes its behavior.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Dynamics of an anharmonic oscillator with a periodic perturbation
    Yu. L. Bolotin
    V. Yu. Gonchar
    M. Ya. Granovskii
    A. V. Chechkin
    Journal of Experimental and Theoretical Physics, 1999, 88 : 196 - 205
  • [42] ANHARMONIC-OSCILLATOR BY PATH INTEGRALS
    MIZRAHI, MM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (01): : 101 - 101
  • [43] Anharmonic oscillator and the optimized basis expansion
    Pedram, Pouria
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4655 - 4666
  • [44] The Optomechanical Response of a Cubic Anharmonic Oscillator
    Huang, Sumei
    Hao, Hongmiao
    Chen, Aixi
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [45] Superconvergent perturbation theory for an anharmonic oscillator
    Tschumper, GS
    Hoffmann, MR
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (01) : 105 - 120
  • [46] STATISTICAL THERMODYNAMICS OF AN ANHARMONIC-OSCILLATOR
    SCHWARZ, M
    JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (03) : 255 - 261
  • [47] COMMENTS ON THE ANHARMONIC-OSCILLATOR MODEL
    ARTECA, GA
    FERNANDEZ, FM
    MESON, AM
    CASTRO, EA
    HELVETICA PHYSICA ACTA, 1983, 56 (06): : 1168 - 1174
  • [48] Dressed coherent states of the anharmonic oscillator
    Enzer, D
    Gabrielse, G
    PHYSICAL REVIEW LETTERS, 1997, 78 (07) : 1211 - 1214
  • [49] UNCERTAINTY PRODUCTS FOR THE ANHARMONIC MORSE OSCILLATOR
    GALLAS, JAC
    LETTERE AL NUOVO CIMENTO, 1980, 28 (01): : 29 - 32
  • [50] THEORY OF A QUANTUM ANHARMONIC-OSCILLATOR
    CARUSOTTO, S
    PHYSICAL REVIEW A, 1988, 38 (07): : 3249 - 3257