Ultimate limits to computation: anharmonic oscillator

被引:1
|
作者
Khorasani, Fatemeh [1 ]
Tanhayi, Mohammad Reza [1 ]
Pirmoradian, Reza [2 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Phys, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Particles & Accelerators, POB 19395-5531, Tehran, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2022年 / 137卷 / 06期
关键词
COMPLEXITY;
D O I
10.1140/epjp/s13360-022-02900-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by studies of ultimate speed of computers, we examine the question of minimum time of orthogonalization in a simple anharmonic oscillator and find an upper bound on the rate of computations. Furthermore, we investigate the growth rate of complexity of operation when the system undergoes a definite perturbation. At the phase space of the parameters, by numerical analysis, we find the critical point where beyond that the rate of complexity changes its behavior.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] EIGENVALUES OF AN ANHARMONIC-OSCILLATOR
    KESARWANI, RN
    VARSHNI, YP
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) : 1983 - 1989
  • [32] Partial integrability of the anharmonic oscillator
    Conte, Robert
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) : 454 - 465
  • [33] Subharmonic orbits in an anharmonic oscillator
    Christie, JR
    Gopalsamy, K
    Panizza, MP
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1997, 38 : 307 - 315
  • [34] Dispersive hyperasymptoties and the anharmonic oscillator
    Alvarez, G
    Howls, CJ
    Silverstone, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4017 - 4042
  • [35] Partial integrability of the anharmonic oscillator
    Robert Conte
    Journal of Nonlinear Mathematical Physics, 2007, 14 : 462 - 473
  • [36] ANHARMONIC-OSCILLATOR - COMMENT
    FROMAN, PO
    KARLSSON, F
    LAKSHMANAN, M
    PHYSICAL REVIEW D, 1979, 20 (12): : 3435 - 3436
  • [37] ULTIMATE LIMITS OF LITHOGRAPHY
    MORGAN, C
    CHEN, GS
    BOOTHROYD, C
    BAILEY, S
    HUMPHREYS, C
    PHYSICS WORLD, 1992, 5 (11) : 28 - 32
  • [38] Optimized regulator for the quantized anharmonic oscillator
    Kovacs, J.
    Nagy, S.
    Sailer, K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (12):
  • [39] NONLINEAR SUSCEPTIBILITIES AND ANHARMONIC OSCILLATOR MODEL
    GARRETT, CGB
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1966, QE 2 (04) : R29 - &
  • [40] Wigner function for a driven anharmonic oscillator
    Kheruntsyan, KV
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (02) : 225 - 233