Scattering threshold for the focusing coupled Schrodinger system revisited

被引:6
|
作者
Saanouni, Tarek [1 ,2 ]
机构
[1] Qassim Univ, Coll Sci & Arts Uglat Asugour, Dept Math, Buraydah, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Partial Differential Equat & Applicat LR03ES04, Tunis 2092, Tunisia
关键词
Nonlinear Schrodinger system; Ground state; Global existence; Scattering; GLOBAL WELL-POSEDNESS; BLOW-UP;
D O I
10.1007/s00030-021-00706-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note investigates the coupled Schrodinger system iu(j) + Delta u(j) = - (Sigma(m)(k=1) a(jk)vertical bar u(k)vertical bar(p)) vertical bar u(j)vertical bar(p-2)u(j). Indeed, beyond the mass-energy threshold given in Saanouni (Appl Anal, 2020. https://doi.org/10.1080/00036811.2020.1808201), a scattering versus finite time blow-up dichotomy is obtained in the mass super-critical and energy sub-critical regime. Moreover, one extends the previous work [18] to the non-radial case.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Energy scattering for radial focusing inhomogeneous bi-harmonic Schrodinger equations
    Saanouni, Tarek
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [42] Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions
    Biondini, Gino
    Kovacic, Gregor
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [43] Bifurcations for a coupled Schrodinger system with multiple components
    Bartsch, Thomas
    Tian, Rushun
    Wang, Zhi-Qiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2109 - 2123
  • [44] Multisymplectic schemes for strongly coupled schrodinger system
    Cai, Jiaxiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2417 - 2429
  • [45] Gain in regularity for a coupled nonlinear Schrodinger system
    Ceballos, Juan Carlos
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2006, 24 (1-2): : 41 - 68
  • [46] On elliptic solutions of a coupled nonlinear Schrodinger system
    Wright, O. C., III
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 264 : 1 - 16
  • [47] Stationary equations of a coupled nonlinear Schrodinger system
    Phys D Nonlinear Phenom, 3-4 (275-289):
  • [48] Integrable turbulence for a coupled nonlinear Schrodinger system
    Xie, Xi-Yang
    Yang, Sheng-Kun
    Ai, Chun-Hui
    Kong, Ling-Cai
    PHYSICS LETTERS A, 2020, 384 (05)
  • [49] The stationary equations of a coupled nonlinear Schrodinger system
    Wright, OC
    PHYSICA D, 1999, 126 (3-4): : 275 - 289
  • [50] On energy stability for the coupled nonlinear Schrodinger system
    Ma, Li
    Zhao, Lin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 774 - 784