Bifurcations for a coupled Schrodinger system with multiple components

被引:7
|
作者
Bartsch, Thomas [1 ]
Tian, Rushun [2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
来源
基金
中国博士后科学基金;
关键词
Coupled Schrodinger system; Bifurcation; Indefinite; Standing waves; Partially synchronized solutions; NONLINEAR ELLIPTIC SYSTEM; BOUND-STATES; POSITIVE SOLUTIONS; GROUND-STATES; R-N; EQUATIONS; SOLITARY; WAVES;
D O I
10.1007/s00033-015-0498-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: Here is a smooth and bounded domain, is the principal eigenvalue of are real constants. Using the positive and nondegenerate solution of the scalar equation , we construct a synchronized solution branch . Then we find a sequence of local bifurcations with respect to , and we find global bifurcation branches of partially synchronized solutions.
引用
收藏
页码:2109 / 2123
页数:15
相关论文
共 50 条
  • [1] Bifurcations for a coupled Schrödinger system with multiple components
    Thomas Bartsch
    Rushun Tian
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2109 - 2123
  • [2] Multiple solutions of a coupled nonlinear Schrodinger system
    Wan, Youyan
    Avila, Andres I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 1308 - 1325
  • [3] Bifurcations of the trajectories at the saddle level in a Hamiltonian system generated by two coupled Schrodinger equations
    Eleonsky, V. M.
    Korolev, V. G.
    Kulagin, N. E.
    Shil'nikov, L. P.
    CHAOS, 1992, 2 (04) : 571 - 588
  • [4] BIFURCATIONS IN A COUPLED ROSSLER SYSTEM
    YOSHINAGA, T
    KITAJIMA, H
    KAWAKAMI, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (10) : 1276 - 1280
  • [5] Multiple solutions for k-coupled Schrodinger system with variable coefficients
    Wang, Xin
    Yin, Lijie
    Yue, Xiaorui
    SCIENCEASIA, 2019, 45 (03): : 279 - 284
  • [6] Bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations
    Yagasaki, Kazuyuki
    Yamazoe, Shotaro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 348 - 401
  • [7] Multiple Existence of Nonradial Positive Solutions for a Coupled Nonlinear Schrodinger System
    Hirano, Norimichi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (02): : 159 - 188
  • [8] HAMILTONIAN BIFURCATIONS OF THE SPATIAL STRUCTURE FOR COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    BRIDGES, TJ
    PHYSICA D, 1992, 57 (3-4): : 375 - 394
  • [9] Rogue Wave Modes for the Coupled Nonlinear Schrodinger System with Three Components: A Computational Study
    Chan, Hiu Ning
    Chow, Kwok Wing
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [10] GLOBAL BIFURCATIONS AND A PRIORI BOUNDS OF POSITIVE SOLUTIONS FOR COUPLED NONLINEAR SCHRODINGER SYSTEMS
    Dai, Guowei
    Tian, Rushun
    Zhang, Zhitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07): : 1905 - 1927