Bifurcations for a coupled Schrodinger system with multiple components

被引:7
|
作者
Bartsch, Thomas [1 ]
Tian, Rushun [2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
来源
基金
中国博士后科学基金;
关键词
Coupled Schrodinger system; Bifurcation; Indefinite; Standing waves; Partially synchronized solutions; NONLINEAR ELLIPTIC SYSTEM; BOUND-STATES; POSITIVE SOLUTIONS; GROUND-STATES; R-N; EQUATIONS; SOLITARY; WAVES;
D O I
10.1007/s00033-015-0498-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: Here is a smooth and bounded domain, is the principal eigenvalue of are real constants. Using the positive and nondegenerate solution of the scalar equation , we construct a synchronized solution branch . Then we find a sequence of local bifurcations with respect to , and we find global bifurcation branches of partially synchronized solutions.
引用
收藏
页码:2109 / 2123
页数:15
相关论文
共 50 条