Bifurcations for a coupled Schrodinger system with multiple components

被引:7
|
作者
Bartsch, Thomas [1 ]
Tian, Rushun [2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
来源
基金
中国博士后科学基金;
关键词
Coupled Schrodinger system; Bifurcation; Indefinite; Standing waves; Partially synchronized solutions; NONLINEAR ELLIPTIC SYSTEM; BOUND-STATES; POSITIVE SOLUTIONS; GROUND-STATES; R-N; EQUATIONS; SOLITARY; WAVES;
D O I
10.1007/s00033-015-0498-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: Here is a smooth and bounded domain, is the principal eigenvalue of are real constants. Using the positive and nondegenerate solution of the scalar equation , we construct a synchronized solution branch . Then we find a sequence of local bifurcations with respect to , and we find global bifurcation branches of partially synchronized solutions.
引用
收藏
页码:2109 / 2123
页数:15
相关论文
共 50 条
  • [21] Soliton excitation for a coherently coupled nonlinear Schrodinger system in optical fibers with two orthogonally polarized components
    Li, Bang-Qing
    Sun, Jian-Zhi
    Ma, Yu-Lan
    OPTIK, 2018, 175 : 275 - 283
  • [22] BIFURCATIONS IN THE SYSTEM OF 2 IDENTICAL DIFFUSIVELY COUPLED BRUSSELATORS
    VOLKOV, EI
    ROMANOV, VA
    PHYSICA SCRIPTA, 1995, 51 (01): : 19 - 28
  • [23] Instability of multiple pulses in coupled nonlinear Schrodinger equations
    Yew, AC
    Sandstede, B
    Jones, CKRT
    PHYSICAL REVIEW E, 2000, 61 (05): : 5886 - 5892
  • [24] MULTIPLE POSITIVE SOLUTIONS FOR COUPLED SCHRODINGER EQUATIONS WITH PERTURBATIONS
    Li, Haoyu
    Wang, Zhi-Qiang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 867 - 884
  • [25] Multiple Bifurcations and Chaos Control in a Coupled Network of Discrete Fractional Order Predator-Prey System
    Kartal, Neriman
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (01) : 93 - 106
  • [26] Multiple existence of solutions for coupled nonlinear Schrodinger equations
    Hirano, Norimichi
    Shioji, Naoki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3845 - 3859
  • [27] Improving system loadability with the consideration of multiple bifurcations
    Chen, Youhong
    Preece, Robin
    Barnes, Mike
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 132
  • [28] Multiple bifurcations of a predator-prey system
    Xiao, Dongmei
    Zhang, Kate Fang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (02): : 417 - 433
  • [29] Multisymplectic schemes for strongly coupled schrodinger system
    Cai, Jiaxiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2417 - 2429
  • [30] Gain in regularity for a coupled nonlinear Schrodinger system
    Ceballos, Juan Carlos
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2006, 24 (1-2): : 41 - 68