Bubbling along boundary geodesics near the second critical exponent

被引:33
|
作者
del Pino, Manuel [1 ,3 ]
Musso, Monica [2 ]
Pacard, Frank [4 ,5 ]
机构
[1] Univ Chile, Dept Ingn & Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Matemat, Macul, Chile
[3] Univ Chile, CMM, Santiago, Chile
[4] Univ Paris 12, F-94010 Creteil, France
[5] Inst Univ France, Paris, France
关键词
Critical Sobolev exponent; blowing-up solution; nondegenerate geodesic; PERTURBED NEUMANN PROBLEM; ELLIPTIC-EQUATIONS; DOMAINS; CURVES;
D O I
10.4171/JEMS/241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The role of the second critical exponent p = (n + 1)/(n - 3), the Sobolev critical exponent in one dimension less, is investigated for the classical Lane-Emden-Fowler problem Δu + up = 0, u > 0 under zero Dirichlet boundary conditions, in a domain Ω in ℝn with bounded, smooth boundary. Given Γ, a geodesic of the boundary with negative inner normal curvature we find that for p = (n + 1)/(n - 3) - ε, there exists a solution uε such that |∇u ε|2converges weakly to a Dirac measure on Γ as ε → 0+, provided that γ is nondegenerate in the sense of second variations of length and ε remains away from a certain explicit discrete set of values for which a resonance phenomenon takes place. © European Mathematical Society 2010.
引用
收藏
页码:1553 / 1605
页数:53
相关论文
共 50 条
  • [41] ELASTIC-MODULI NEAR PERCOLATION - UNIVERSAL RATIO AND CRITICAL EXPONENT
    BERGMAN, DJ
    PHYSICAL REVIEW B, 1985, 31 (03): : 1696 - 1698
  • [42] Phase equilibria of a near-critical ionic system. Critical exponent of the order parameter
    Bianchi, HL
    Japas, ML
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (22): : 10472 - 10478
  • [43] INTERFERENCE FRINGES NEAR A CRITICAL ANGLE BOUNDARY
    LEURGANS, PJ
    TURNER, AF
    ULLRICH, OA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1948, 38 (12) : 1104 - 1104
  • [44] Critical exponents near a random fractal boundary
    Cardy, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (16): : L177 - L182
  • [45] Near Critical Phenomena in Laminar Boundary Layers
    Kluwick, A.
    Braun, S.
    Cox, E. A.
    IUTAM SYMPOSIUM ON UNSTEADY SEPARATED FLOWS AND THEIR CONTROL, 2009, 14 : 91 - +
  • [46] Near critical phenomena in laminar boundary layers
    Kluwick, A.
    Braun, S.
    Cox, E. A.
    JOURNAL OF FLUIDS AND STRUCTURES, 2008, 24 (08) : 1185 - 1193
  • [47] CRITICAL PROPERTIES OF A SYSTEM NEAR AN ANGLE BOUNDARY
    BARIEV, RZ
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (01) : 1061 - 1062
  • [48] The Second Critical Exponent for a Time-Fractional Reaction-Diffusion Equation
    Igarashi, Takefumi
    MATHEMATICS, 2024, 12 (18)
  • [49] Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents
    del Pino, Manuel
    Mahmoudi, Fethi
    Musso, Monica
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (08) : 1687 - 1748
  • [50] Second critical exponent for evolution p-Laplacian equation with weighted source
    Yang, Jinge
    Yang, Chunxiao
    Zheng, Sining
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (11-12) : 247 - 256