Bubbling along boundary geodesics near the second critical exponent

被引:33
|
作者
del Pino, Manuel [1 ,3 ]
Musso, Monica [2 ]
Pacard, Frank [4 ,5 ]
机构
[1] Univ Chile, Dept Ingn & Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Dept Matemat, Macul, Chile
[3] Univ Chile, CMM, Santiago, Chile
[4] Univ Paris 12, F-94010 Creteil, France
[5] Inst Univ France, Paris, France
关键词
Critical Sobolev exponent; blowing-up solution; nondegenerate geodesic; PERTURBED NEUMANN PROBLEM; ELLIPTIC-EQUATIONS; DOMAINS; CURVES;
D O I
10.4171/JEMS/241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The role of the second critical exponent p = (n + 1)/(n - 3), the Sobolev critical exponent in one dimension less, is investigated for the classical Lane-Emden-Fowler problem Δu + up = 0, u > 0 under zero Dirichlet boundary conditions, in a domain Ω in ℝn with bounded, smooth boundary. Given Γ, a geodesic of the boundary with negative inner normal curvature we find that for p = (n + 1)/(n - 3) - ε, there exists a solution uε such that |∇u ε|2converges weakly to a Dirac measure on Γ as ε → 0+, provided that γ is nondegenerate in the sense of second variations of length and ε remains away from a certain explicit discrete set of values for which a resonance phenomenon takes place. © European Mathematical Society 2010.
引用
收藏
页码:1553 / 1605
页数:53
相关论文
共 50 条
  • [31] Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces
    Jost, Juergen
    Liu, Lei
    Zhu, Miaomiao
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (03) : 639 - 669
  • [32] Measurement of the Duration and Critical Exponent of Concentration Fluctuations in Lipid Bilayers Near the Critical Point
    Honerkamp-Smith, Aurelia R.
    Keller, Sarah L.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 273A - 273A
  • [33] THE CRITICAL EXPONENT NU ALONG THE FERROMAGNETIC-NONFERROMAGNETIC PHASE-BOUNDARY IN THE 2-DIMENSIONAL +/- J-ISING MODEL
    KITATANI, H
    OGUCHI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1598 - 1605
  • [34] Second critical exponent for a higher-order semilinear parabolic system
    YANG ChunXiao
    YANG JinGe
    ZHENG SiNing
    Science China(Mathematics), 2015, 58 (07) : 1453 - 1460
  • [35] Second critical exponent for a higher-order semilinear parabolic system
    ChunXiao Yang
    JinGe Yang
    SiNing Zheng
    Science China Mathematics, 2015, 58 : 1453 - 1460
  • [36] Second critical exponent and life span for pseudo-parabolic equation
    Yang, Chunxiao
    Cao, Yang
    Zheng, Sining
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (12) : 3286 - 3303
  • [37] Second critical exponent for a higher-order semilinear parabolic system
    Yang ChunXiao
    Yang Jinge
    Zheng SiNing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1453 - 1460
  • [38] Multiple solutions for a polyharmonic homogeneous boundary value problem with critical exponent
    Anaya, N.
    Cano, A.
    Hernandez-Martinez, E.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (12) : 1730 - 1745
  • [39] On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation
    Chueshov, I
    Eller, M
    Lasiecka, I
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) : 1901 - 1951
  • [40] Boundary effects in second sound near Tλ
    Swanson, D.R.
    Chui, T.C.P.
    Rigby, K.W.
    Lipa, J.A.
    Physica B: Condensed Matter, 1990, 165-66 (01) : 561 - 562