Breit-Wigner formula at barrier tops

被引:4
|
作者
Fujiié, S [1 ]
Ramond, T
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] Univ Paris 11, Dept Math, CNRS, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1063/1.1562749
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For noncritical energies, the asymptotic behavior of the scattering phase and of the time-delay are known to be described by a Weyl type formula and the Breit-Wigner formula, respectively. We consider here the case of critical energy levels in dimension 1. We obtain the semiclassical asymptotics of the scattering phase and of the time-delay, uniformly with respect to the energy in a neighborhood of a critical value. (C) 2003 American Institute of Physics.
引用
收藏
页码:1971 / 1983
页数:13
相关论文
共 50 条
  • [41] Pole versus Breit-Wigner resonance description of the orbitally excited baryons
    Workman, R
    PHYSICAL REVIEW C, 1999, 59 (06): : 3441 - 3443
  • [42] Model-Independent Extraction of the Pole and Breit-Wigner Resonance Parameters
    Ceci, S.
    Korolija, M.
    Zauner, B.
    PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [43] Breit-Wigner parameters of the S11(1535) nucleon resonance
    E. V. Balandina
    E. M. Leikin
    N. P. Yudin
    Physics of Atomic Nuclei, 2004, 67 : 1378 - 1384
  • [44] Dark matter annihilation via Breit-Wigner enhancement with heavier mediator
    Cheng, Yu
    Ge, Shao-Feng
    Sheng, Jie
    Yanagida, Tsutomu T.
    PHYSICS LETTERS B, 2025, 861
  • [45] Breit-Wigner parameters of the S11(1535) nucleon resonance
    Balandina, EV
    Leikin, EM
    Yudin, NP
    PHYSICS OF ATOMIC NUCLEI, 2004, 67 (07) : 1378 - 1384
  • [46] Localization and absence of Breit-Wigner form for cauchy random band matrices
    Frahm, KM
    ELECTRONIC CORRELATIONS: FROM MESO- TO NANO-PHYSICS, 2001, : 279 - 282
  • [47] Impact of Fano and Breit-Wigner resonances in the thermoelectric properties of nanoscale junctions
    Garcia-Suarez, V. M.
    Ferradas, R.
    Ferrer, J.
    PHYSICAL REVIEW B, 2013, 88 (23)
  • [48] Replacing the Breit-Wigner Amplitude by the Complex Delta Function to Describe Resonances
    de la Madrid, Rafael
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2010, (184): : 516 - 522
  • [49] About the Breit–Wigner Formula for Identical Particles
    A. I. L’vov
    Physics of Atomic Nuclei, 2018, 81 : 748 - 749
  • [50] Breit-Wigner approximation and the distribution of resonances (vol 204, pg 329, 1999)
    Petkov, V
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) : 733 - 735