Breit-Wigner formula at barrier tops

被引:4
|
作者
Fujiié, S [1 ]
Ramond, T
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] Univ Paris 11, Dept Math, CNRS, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1063/1.1562749
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For noncritical energies, the asymptotic behavior of the scattering phase and of the time-delay are known to be described by a Weyl type formula and the Breit-Wigner formula, respectively. We consider here the case of critical energy levels in dimension 1. We obtain the semiclassical asymptotics of the scattering phase and of the time-delay, uniformly with respect to the energy in a neighborhood of a critical value. (C) 2003 American Institute of Physics.
引用
收藏
页码:1971 / 1983
页数:13
相关论文
共 50 条
  • [21] Nearby resonances beyond the Breit-Wigner approximation
    Cacciapaglia, Giacomo
    Deandrea, Aldo
    De Curtis, Stefania
    PHYSICS LETTERS B, 2009, 682 (01) : 43 - 49
  • [22] EFFECT OF BREIT-WIGNER RESONANCES IN CHEMICAL REACTION
    BLUM, L
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (04): : 1972 - &
  • [23] A simple alternative to the relativistic Breit-Wigner distribution
    Giacosa, Francesco
    Okopinska, Anna
    Shastry, Vanamali
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (12):
  • [24] Breit-Wigner enhancement of dark matter annihilation
    Ibe, Masahiro
    Murayama, Hitoshi
    Yanagida, T. T.
    PHYSICAL REVIEW D, 2009, 79 (09):
  • [25] Scalar resonances: Chiral Breit-Wigner expressions
    Arantes, LO
    Robilotta, MR
    PHYSICAL REVIEW D, 2006, 73 (03):
  • [26] Breit-Wigner approximation for propagators of mixed unstable states
    Elina Fuchs
    Georg Weiglein
    Journal of High Energy Physics, 2017
  • [27] Breit-Wigner resonances and nucleon propertiesin the resonance region
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3 (355):
  • [28] Breit-Wigner formalism for non-Abelian theories
    Papavassiliou, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2003, 29 (01) : 153 - 159
  • [29] Breit-Wigner resonances and nucleon properties in the resonance region
    Dong, YB
    PHYSICS LETTERS B, 1998, 418 (3-4) : 355 - 362
  • [30] RESON - A PROGRAM FOR THE DETECTION AND FITTING OF BREIT-WIGNER RESONANCES
    TENNYSON, J
    NOBLE, CJ
    COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) : 421 - 424