A new approach to synchronization analysis of linearly coupled map lattices

被引:8
|
作者
Lu, Wenlian
Chen, Tianping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
linearly coupled map lattices; synchronization; synchronization manifold; local stability of synchronization manifold; global stability of synchronization manifold;
D O I
10.1007/s11401-005-0494-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new approach to analyze synchronization of linearly coupled map lattices (LCMLs) is presented. A reference vector F(t) is introduced as the projection of the trajectory of the coupled system on the synchronization manifold. The stability analysis of the synchronization manifold can be regarded as investigating the difference between the trajectory and the projection. By this method, some criteria are given for both local and global synchronization. These criteria indicate that the left and right eigenvectors corresponding to the eigenvalue "0" of the coupling matrix play key roles in the stability of synchronization manifold for the coupled system. Moreover, it is revealed that the stability of synchronization manifold for the coupled system is different from the stability for dynamical system in usual sense. That is, the solution of the coupled system does not converge to a certain knowable s(t) satisfying s(t+1) = f (s(t)) but to the reference vector on the synchronization manifold, which in fact is a certain weighted average of each x(i) (t) for i = 1, center dot center dot center dot, m, but not a solution s(t) satisfying s(t + 1) = f (s(t)).
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [31] Partial and complete periodic synchronization in coupled discontinuous map lattices
    杨科利
    陈会云
    杜伟伟
    金涛
    屈世显
    Chinese Physics B, 2014, (07) : 335 - 340
  • [32] Synchronization in two-layer bistable coupled map lattices
    Nekorkin, VI
    Kazantsev, VB
    Velarde, MG
    PHYSICA D, 2001, 151 (01): : 1 - 26
  • [33] Parameter identification and chaos synchronization for uncertain coupled map lattices
    Lu, Ling
    Li, Yi
    Sun, Ao
    NONLINEAR DYNAMICS, 2013, 73 (04) : 2111 - 2117
  • [34] Parameter identification and chaos synchronization for uncertain coupled map lattices
    Ling Lü
    Yi Li
    Ao Sun
    Nonlinear Dynamics, 2013, 73 : 2111 - 2117
  • [35] Chaos synchronization in long-range coupled map lattices
    Anteneodo, C
    Batista, AM
    Viana, RL
    PHYSICS LETTERS A, 2004, 326 (3-4) : 227 - 233
  • [36] Phase transitions in 2D linearly stable coupled map lattices
    Cuche, Y
    Livi, R
    Politi, A
    PHYSICA D, 1997, 103 (1-4): : 369 - 380
  • [37] Invariant manifolds and cluster synchronization in a family of locally coupled map lattices
    Belykh, V
    Belykh, I
    Komrakov, N
    Mosekilde, E
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) : 245 - 256
  • [38] Synchronization in coupled map lattices with small-world delayed interactions
    Li, CG
    Li, SW
    Liao, XF
    Yu, JB
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 335 (3-4) : 365 - 370
  • [39] A new approach based on coupled map lattices for load forecasting in smart grids
    Coelho, Mariana Cristina
    Oening, Ana Paula
    Aoki, Alexandre Rasi
    2013 IEEE PES CONFERENCE ON INNOVATIVE SMART GRID TECHNOLOGIES (ISGT LATIN AMERICA), 2013,
  • [40] Synchronization and suppression of chaos in non-locally coupled map lattices
    Szmoski, R. M.
    Pinto, S. E. De S.
    Van Kan, M. T.
    Batista, A. M.
    Viana, R. L.
    Lopes, S. R.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 999 - 1009