A new approach to synchronization analysis of linearly coupled map lattices

被引:8
|
作者
Lu, Wenlian
Chen, Tianping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
linearly coupled map lattices; synchronization; synchronization manifold; local stability of synchronization manifold; global stability of synchronization manifold;
D O I
10.1007/s11401-005-0494-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new approach to analyze synchronization of linearly coupled map lattices (LCMLs) is presented. A reference vector F(t) is introduced as the projection of the trajectory of the coupled system on the synchronization manifold. The stability analysis of the synchronization manifold can be regarded as investigating the difference between the trajectory and the projection. By this method, some criteria are given for both local and global synchronization. These criteria indicate that the left and right eigenvectors corresponding to the eigenvalue "0" of the coupling matrix play key roles in the stability of synchronization manifold for the coupled system. Moreover, it is revealed that the stability of synchronization manifold for the coupled system is different from the stability for dynamical system in usual sense. That is, the solution of the coupled system does not converge to a certain knowable s(t) satisfying s(t+1) = f (s(t)) but to the reference vector on the synchronization manifold, which in fact is a certain weighted average of each x(i) (t) for i = 1, center dot center dot center dot, m, but not a solution s(t) satisfying s(t + 1) = f (s(t)).
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [21] Zero delay synchronization of chaos in coupled map lattices
    Santhanam, M. S.
    Arora, Siddharth
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [22] Synchronization in coupled map lattices with periodic boundary condition
    Lin, WW
    Peng, CC
    Wang, CS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (08): : 1635 - 1652
  • [23] Phase synchronization in inhomogeneous globally coupled map lattices
    Ho, MC
    Hung, YC
    Jiang, IM
    PHYSICS LETTERS A, 2004, 324 (5-6) : 450 - 457
  • [24] Extreme value theory for synchronization of coupled map lattices
    Faranda, D.
    Ghoudi, H.
    Guiraud, P.
    Vaienti, S.
    NONLINEARITY, 2018, 31 (07) : 3326 - 3358
  • [25] Linearly Coupled Synchronization of the New Chaotic Systems
    LU Jun-an~1
    2. School of Water Resources and Hydropower
    Wuhan University Journal of Natural Sciences, 2005, (06) : 52 - 55
  • [26] Global synchronization & anti-synchronization in N-coupled map lattices
    Jafarizadeh, M. A.
    Behnia, S.
    Faizi, E.
    Ahadpour, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (04) : 1005 - 1015
  • [27] Global Synchronization & Anti-Synchronization in N-Coupled Map Lattices
    M. A. Jafarizadeh
    S. Behnia
    E. Faizi
    S. Ahadpour
    International Journal of Theoretical Physics, 2008, 47 : 1005 - 1015
  • [28] Synchronization universality classes and stability of smooth coupled map lattices
    Bagnoli, F
    Rechtman, R
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [29] Chaotic Synchronization in Coupled Map Lattices with Periodic Boundary Conditions
    Lin, Wen-Wei
    Wang, Yi-Qian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2002, 1 (02): : 175 - 189
  • [30] Partial and complete periodic synchronization in coupled discontinuous map lattices
    Yang Ke-Li
    Chen Hui-Yun
    Du Wei-Wei
    Jin Tao
    Qu Shi-Xian
    CHINESE PHYSICS B, 2014, 23 (07)