DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data

被引:115
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel J. [1 ,3 ,4 ]
Van Camp, Pieter-Jan [1 ,2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,5 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Singh, Harinder [9 ,10 ,11 ]
Salomonis, Nathan [1 ,2 ,5 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45221 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45221 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Ctr Syst Immunol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
[9] Univ Pittsburgh, Ctr Syst Immunol, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Dept Immunol, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15620 USA
来源
CELL REPORTS | 2019年 / 29卷 / 06期
关键词
PROGENITORS;
D O I
10.1016/j.celrep.2019.09.082
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. While droplet- and well-based methods have increased the capture frequency of cells for scRNA-seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets with a combination of deconvolution analyses and the identification of unique cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm prevents the prediction of valid mixed-lineage and transitional cell states as doublets by considering their unique gene expression. DoubletDecon has an easy-to-use graphical user interface and is compatible with diverse species and unsupervised population detection algorithms.
引用
收藏
页码:1718 / +
页数:18
相关论文
共 50 条
  • [41] Multi-Target Integration and Annotation of Single-Cell RNA-Sequencing Data
    Bhandari, Sapan
    Whitener, Nathan P.
    Zhao, Konghao
    Khuri, Natalia
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,
  • [42] Clustering Single-cell RNA-sequencing Data based on Matching Clusters Structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (01): : 89 - 95
  • [43] scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data
    Wang, Zhe
    Hu, Junming
    Johnson, W. Evan
    Campbell, Joshua D.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [44] Normalization by distributional resampling of high throughput single-cell RNA-sequencing data
    Brown, Jared
    Ni, Zijian
    Mohanty, Chitrasen
    Bacher, Rhonda
    Kendziorski, Christina
    BIOINFORMATICS, 2021, 37 (22) : 4123 - 4128
  • [45] Machine learning and statistical methods for clustering single-cell RNA-sequencing data
    Petegrosso, Raphael
    Li, Zhuliu
    Kuang, Rui
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1209 - 1223
  • [46] A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA
    Liu, Yiyi
    Warren, Joshua L.
    Zhao, Hongyu
    ANNALS OF APPLIED STATISTICS, 2019, 13 (03): : 1733 - 1752
  • [47] Joint learning dimension reduction and clustering of single-cell RNA-sequencing data
    Wu, Wenming
    Ma, Xiaoke
    BIOINFORMATICS, 2020, 36 (12) : 3825 - 3832
  • [48] Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
    Allan-Hermann Pool
    Helen Poldsam
    Sisi Chen
    Matt Thomson
    Yuki Oka
    Nature Methods, 2023, 20 : 1506 - 1515
  • [49] scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data
    Zhang, Lin
    Xiang, Haiping
    Wang, Feng
    Chen, Zepeng
    Shen, Mo
    Ma, Jiani
    Liu, Hui
    Zheng, Hongdang
    METHODS, 2024, 229 : 115 - 124
  • [50] SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data
    Gan, Dailin
    Li, Jun
    BIOINFORMATICS, 2023, 39 (01)