DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data

被引:115
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel J. [1 ,3 ,4 ]
Van Camp, Pieter-Jan [1 ,2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,5 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Singh, Harinder [9 ,10 ,11 ]
Salomonis, Nathan [1 ,2 ,5 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45221 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45221 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Ctr Syst Immunol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
[9] Univ Pittsburgh, Ctr Syst Immunol, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Dept Immunol, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15620 USA
来源
CELL REPORTS | 2019年 / 29卷 / 06期
关键词
PROGENITORS;
D O I
10.1016/j.celrep.2019.09.082
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. While droplet- and well-based methods have increased the capture frequency of cells for scRNA-seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets with a combination of deconvolution analyses and the identification of unique cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm prevents the prediction of valid mixed-lineage and transitional cell states as doublets by considering their unique gene expression. DoubletDecon has an easy-to-use graphical user interface and is compatible with diverse species and unsupervised population detection algorithms.
引用
收藏
页码:1718 / +
页数:18
相关论文
共 50 条
  • [31] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Yu Tian
    Ruiqing Zheng
    Zhenlan Liang
    Suning Li
    Fang-Xiang Wu
    Min Li
    TsinghuaScienceandTechnology, 2021, 26 (05) : 772 - 789
  • [32] Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
    Lijia Yu
    Yue Cao
    Jean Y. H. Yang
    Pengyi Yang
    Genome Biology, 23
  • [33] Clustering single-cell rna-sequencing data based on matching clusters structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    Tehnicki Vjesnik, 2020, 27 (01): : 89 - 95
  • [34] Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
    Pool, Allan-Hermann
    Poldsam, Helen
    Chen, Sisi
    Thomson, Matt
    Oka, Yuki
    NATURE METHODS, 2023, 20 (10) : 1506 - +
  • [35] scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
    Vy Nguyen
    Johannes Griss
    BMC Bioinformatics, 23
  • [36] Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
    Yu, Lijia
    Cao, Yue
    Yang, Jean Y. H.
    Yang, Pengyi
    GENOME BIOLOGY, 2022, 23 (01)
  • [37] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [38] scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
    Nguyen, Vy
    Griss, Johannes
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [39] Fast identification of differential distributions in single-cell RNA-sequencing data with waddR
    Schefzik, Roman
    Flesch, Julian
    Goncalves, Angela
    BIOINFORMATICS, 2021, 37 (19) : 3204 - 3211
  • [40] scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data
    Zhe Wang
    Junming Hu
    W. Evan Johnson
    Joshua D. Campbell
    BMC Bioinformatics, 20