DIRECT METHOD OF MOVING PLANES FOR LOGARITHMIC LAPLACIAN SYSTEM IN BOUNDED DOMAINS

被引:15
|
作者
Liu, Baiyu [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Logarithmic Laplacian; direct method of moving planes; radial symmetry; LIOUVILLE TYPE THEOREM; FRACTIONAL LAPLACIAN; INTEGRAL-EQUATIONS; ELLIPTIC PROBLEM; SYMMETRY; CLASSIFICATION; NONEXISTENCE; REGULARITY;
D O I
10.3934/dcds.2018235
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chen, Li and Li [Adv. Math., 308(2017), pp. 404-437] developed a direct method of moving planes for the fractional Laplacian. In this paper, we extend their method to the logarithmic Laplacian. We consider both the logarithmic equation and the system. To carry out the method, we establish two kinds of narrow region principle for the equation and the system separately. Then using these narrow region principles, we give the radial symmetry results for the solutions to semi-linear logarithmic Laplacian equations and systems on the ball.
引用
收藏
页码:5339 / 5349
页数:11
相关论文
共 50 条
  • [31] A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group
    Xin-jing Wang
    Peng-cheng Niu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 364 - 379
  • [32] A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group
    Wang, Xin-jing
    Niu, Peng-cheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (02): : 364 - 379
  • [33] (p, q)- LAPLACIAN PROBLEMS WITH PARAMETERS IN BOUNDED AND UNBOUNDED DOMAINS
    El Manouni, Said
    Perera, Kanishka
    Winkert, Patrick
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (04): : 921 - 937
  • [34] Melas-type bounds for the Heisenberg Laplacian on bounded domains
    Kovarik, Hynek
    Ruszkowski, Bartosch
    Weidl, Timo
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (02) : 413 - 434
  • [35] On a perturbed p(x)-Laplacian problem in bounded and unbounded domains
    Cammaroto, F.
    Vilasi, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 71 - 83
  • [36] THE METHOD OF MOVING PLANES: A QUANTITATIVE APPROACH
    Ciraolo, Giulio
    Roncoroni, Alberto
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2018, 9 : 41 - 77
  • [37] SOME NOTES ON THE METHOD OF MOVING PLANES
    DANCER, EN
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) : 425 - 434
  • [38] A Direct Method of Moving Planes to Fractional Power Sub Laplace Equations on the Heisenberg Group
    Xin-jing WANG
    Peng-cheng NIU
    ActaMathematicaeApplicataeSinica, 2021, 37 (02) : 364 - 379
  • [40] Fractional potential: A new perspective on the fractional Laplacian problem on bounded domains
    Feng, Libo
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125