Confinement effects on fiber pullout forces for ultra-high-performance concrete

被引:19
|
作者
McSwain, Arden C. [1 ]
Berube, Keith A. [1 ]
Cusatis, Gianluca [2 ]
Landis, Eric N. [1 ]
机构
[1] Univ Maine, Orono, ME 04469 USA
[2] Northwestern Univ, Evanston, IL USA
来源
关键词
Ultra-high-performance concrete; Fiber pullout; Fiber reinforced concrete; REINFORCED-CONCRETE;
D O I
10.1016/j.cemconcomp.2018.04.011
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fiber reinforcement of ultra-high-performance concrete (UHPC) is necessary for adding toughness and ductility to an otherwise very brittle matrix. The action of fibers pulling out of the concrete matrix is one of the primary mechanisms of energy dissipation. Of interest in this work is the effect of a compressive stress in the concrete matrix on the fiber pullout behavior. An experimental fixture was developed to apply confining forces to the UHPC matrix while a fiber is pulled out of the matrix. Approximately 90 pullout tests were conducted with specimens subjected to confinements of 2, 38, and 76 MPa. Complete force-pullout length data were recorded and analyzed. The results showed that confinement stresses had a positive correlation with both peak force and work of the pullout force, but the latter was only valid for the first few millimeters of pullout. When the entire response was considered, the correlation with work of pullout disappeared. An analytical pullout model was employed to isolate the effects of bond fracture energy and friction. Fitting the model to the data showed that bond fracture energy was not affected, but friction stress increased up to 60% for high confining stresses.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [41] Buckling-Restrained Bracing System with Ultra-High-Performance Fiber Concrete
    Ostovar, Nima
    Hejazi, Farzad
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [42] Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    CEMENT & CONCRETE COMPOSITES, 2016, 74 : 71 - 87
  • [43] Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    CEMENT & CONCRETE COMPOSITES, 2016, 73 : 267 - 280
  • [44] MECHANICAL AND SHRINKAGE BEHAVIOR OF BASALT FIBER REINFORCED ULTRA-HIGH-PERFORMANCE CONCRETE
    Nguyen Ngoc Lam
    Luong Van Hung
    INTERNATIONAL JOURNAL OF GEOMATE, 2021, 20 (78): : 28 - 35
  • [45] Ultra-high-performance fiber reinforced concrete review: constituents, properties, and applications
    Sanya, Olajide Tunmilayo
    Shi, Jie
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (07)
  • [46] Novel Ultra-High-Performance Glass Concrete
    The Civil Engineering Department, The Université de Sherbrooke, QC, Canada
    不详
    不详
    不详
    QC, Canada
    Concr. Int., 3 (41-47):
  • [47] Ultra-high-performance geopolymer concrete: A review
    Qaidi, Shaker M. A.
    Atrushi, Dawood Sulaiman
    Mohammed, Ahmed S.
    Ahmed, Hemn Unis
    Faraj, Rabar H.
    Emad, Wael
    Tayeh, Bassam A.
    Najm, Hadee Mohammed
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 346
  • [48] Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC)
    Mu, Ru
    Chen, Jiao
    Chen, Xiangshang
    Diao, Chengran
    Wang, Xiaowei
    Qing, Longbang
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 406
  • [49] Rheology control of ultra-high-performance concrete made with different fiber contents
    Teng, Le
    Meng, Weina
    Khayat, Kamal H.
    CEMENT AND CONCRETE RESEARCH, 2020, 138
  • [50] Mechanical properties of recycled steel fiber reinforced ultra-high-performance concrete
    Yang J.
    Peng G.
    Shui G.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (08): : 1949 - 1956