Confinement effects on fiber pullout forces for ultra-high-performance concrete

被引:19
|
作者
McSwain, Arden C. [1 ]
Berube, Keith A. [1 ]
Cusatis, Gianluca [2 ]
Landis, Eric N. [1 ]
机构
[1] Univ Maine, Orono, ME 04469 USA
[2] Northwestern Univ, Evanston, IL USA
来源
关键词
Ultra-high-performance concrete; Fiber pullout; Fiber reinforced concrete; REINFORCED-CONCRETE;
D O I
10.1016/j.cemconcomp.2018.04.011
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fiber reinforcement of ultra-high-performance concrete (UHPC) is necessary for adding toughness and ductility to an otherwise very brittle matrix. The action of fibers pulling out of the concrete matrix is one of the primary mechanisms of energy dissipation. Of interest in this work is the effect of a compressive stress in the concrete matrix on the fiber pullout behavior. An experimental fixture was developed to apply confining forces to the UHPC matrix while a fiber is pulled out of the matrix. Approximately 90 pullout tests were conducted with specimens subjected to confinements of 2, 38, and 76 MPa. Complete force-pullout length data were recorded and analyzed. The results showed that confinement stresses had a positive correlation with both peak force and work of the pullout force, but the latter was only valid for the first few millimeters of pullout. When the entire response was considered, the correlation with work of pullout disappeared. An analytical pullout model was employed to isolate the effects of bond fracture energy and friction. Fitting the model to the data showed that bond fracture energy was not affected, but friction stress increased up to 60% for high confining stresses.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [21] Advancing Ultra-High-Performance Concrete
    Graybeal, Benjamin
    Crane, Charles Kennan
    Perry, Vic
    Corvez, Dominique
    Ahlborn, Theresa M.
    Concrete International, 2019, 41 (04) : 41 - 45
  • [22] Influence of hybrid reinforcement effects of fiber types on the mechanical properties of ultra-high-performance concrete
    Kim, Gi Woong
    Choi, Hong-Joon
    Piao, Rongzhen
    Oh, Taekgeun
    Koh, Kyungtaek
    Lim, Kwangmo
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 426
  • [23] Effects of combined nanoparticles on dynamic strength of ultra-high-performance fiber-reinforced concrete
    Dang, Van Phi
    Noh, Hyeon Woo
    Kim, Dong Joo
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [24] Effects of Steel Fiber and Specimen Geometric Dimensions on the Mechanical Properties of Ultra-High-Performance Concrete
    Fang, Haozhen
    Gu, Mingen
    Zhang, Shufeng
    Jiang, Haibo
    Fang, Zhuangcheng
    Hu, Jiaxin
    MATERIALS, 2022, 15 (09)
  • [25] Revolutionary concrete solutions understanding ultra-high-performance, fiber-reinforced concrete
    Perry, Vic
    Moore, Brian
    Bierwagen, Dean
    Construction Specifier, 2006, 59 (10): : 40 - 52
  • [26] Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete
    Kim, Min-Jae
    Yoo, Doo-Yeol
    Kim, Soonho
    Shin, Minsik
    Banthia, Nemkumar
    CEMENT AND CONCRETE RESEARCH, 2018, 107 : 30 - 40
  • [27] Cryogenic pullout behavior of steel fibers from ultra-high-performance concrete under impact loading
    Kim, Min-Jae
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 239
  • [28] Bond performance of carbon fiber reinforced polymer rebars in ultra-high-performance concrete
    Zhu, Haitang
    He, Yunjian
    Cai, Gaochuang
    Cheng, Shengzhao
    Zhang, Yin
    Larbi, Amir Si
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 387
  • [29] An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers
    Yoo, Doo-Yeol
    Kim, Soonho
    Kim, Jae-Jin
    Chun, Booki
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 206 : 46 - 61
  • [30] Interfacial bond properties and pullout behaviors of steel fibers embedded in ultra-high-performance concrete: A review
    Wu, Hansong
    Shen, Aiqin
    Cai, Yanxia
    Ma, Qiang
    Ren, Guiping
    Deng, Shiyi
    Pan, Hongmei
    MATERIALS TODAY COMMUNICATIONS, 2023, 35