Quantum hydrodynamic models from a maximum entropy principle

被引:9
|
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
关键词
D O I
10.1088/1751-8113/43/10/102001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density matrix formalism to derive a kinetic theory for a quantum gas. Generalized kinetic fields are introduced and, employing the Wigner function, a certain hierarchy of quantum hydrodynamic (QHD) equations for the corresponding macroscopic variables is obtained. We assert a maximum entropy principle to obtain closure of the QHD system. For the explicit incorporation of statistics a proper quantum entropy is analyzed in terms of the reduced density matrix. The determination of the reduced Wigner function for equilibrium and non-equilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (h) over bar (2). Quantum contributions are expressed in powers of (h) over bar (2) while classical results are recovered in the limit (h) over bar -> 0.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum hydrodynamic and diffusion models derived from the entropy principle
    Degond, Pierre
    Callego, Samy
    Mehats, Florian
    Ringhofer, Christian
    QUANTUM TRANSPORT, 2008, 1946 : 111 - 168
  • [2] Maximum entropy principle and hydrodynamic models in statistical mechanics
    M. Trovato
    L. Reggiani
    La Rivista del Nuovo Cimento, 2012, 35 : 99 - 266
  • [3] Maximum entropy principle and hydrodynamic models in statistical mechanics
    Trovato, M.
    Reggiani, L.
    RIVISTA DEL NUOVO CIMENTO, 2012, 35 (3-4): : 99 - 266
  • [4] Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
    Barletti, Luigi
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [5] Statistics and quantum maximum entropy principle
    Trovato, M.
    Reggiani, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01): : 247 - 255
  • [6] Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism
    Trovato, M.
    Reggiani, L.
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [7] Maximum entropy principle for hydrodynamic transport in semiconductor devices
    Trovato, M
    Reggiani, L
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) : 4050 - 4065
  • [8] Maximum entropy principle for hydrodynamic transport in semiconductor devices
    Trovato, M.
    Reggiani, L.
    Journal of Applied Physics, 1999, 85 (8 I): : 4050 - 4065
  • [9] Compositional models and maximum entropy principle
    Jirousek, Radim
    Malec, Miroslav
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 : 589 - 595
  • [10] Quantum collapse rules from the maximum relative entropy principle
    Hellmann, Frank
    Kaminski, Wojciech
    Kostecki, Ryszard Pawel
    NEW JOURNAL OF PHYSICS, 2016, 18