Schrodinger operator;
point interactions;
self-adjoint extensions;
number of negative squares;
EIGENVALUES;
NUMBER;
D O I:
10.1007/s00020-010-1759-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate negative spectra of one-dimensional (1D) Schrodinger operators with delta- and delta'-interactions on a discrete set in the framework of a new approach. Namely, using the technique of boundary triplets and the corresponding Weyl functions, we complete and generalize the results of Albeverio and Nizhnik (Lett Math Phys 65: 27-35, 2003; Methods Funct Anal Topol 9(4): 273-286, 2003). For instance, we propose an algorithm for determining the number of negative squares of the operator with delta-interactions. We also show that the number of negative squares of the operator with delta'-interactions equals the number of negative strengths.
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaCardiff Univ, Sch Comp Sci & Informat, Cardiff CF24, S Glam, Wales
Kostenko, Aleksey
Malamud, Mark
论文数: 0引用数: 0
h-index: 0
机构:
NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, UkraineCardiff Univ, Sch Comp Sci & Informat, Cardiff CF24, S Glam, Wales
Malamud, Mark
Teschl, Gerald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, AustriaCardiff Univ, Sch Comp Sci & Informat, Cardiff CF24, S Glam, Wales
机构:
Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect ESIME Zacateno, Mexico City, DF, MexicoInst Politecn Nacl, Escuela Super Ingn Mecan & Elect ESIME Zacateno, Mexico City, DF, Mexico