One-dimensional Schrodinger operators with δ'-interactions on Cantor-type sets

被引:15
|
作者
Eckhardt, Jonathan [1 ]
Kostenko, Aleksey [2 ]
Malamud, Mark [3 ]
Teschl, Gerald [2 ,4 ]
机构
[1] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24, S Glam, Wales
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
[4] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Schrodinger operator; delta'-Interaction; Spectral properties; STURM-LIOUVILLE OPERATORS; NORM-RESOLVENT CONVERGENCE; INVERSE SPECTRAL THEORY; POINT INTERACTIONS; NEGATIVE EIGENVALUES; QUANTUM-MECHANICS; POTENTIALS; COEFFICIENTS; NUMBER;
D O I
10.1016/j.jde.2014.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a novel approach for defining a delta'-interaction on a subset of the real line of Lebesgue measure zero which is based on Sturm-Liouville differential expression with measure coefficients. This enables us to establish basic spectral properties (e.g., self-adjointness, lower semiboundedness and spectral asymptotics) of Hamiltonians with delta'-interactions concentrated on sets of complicated structures. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 449
页数:35
相关论文
共 50 条
  • [1] One-dimensional Moran sets and the spectrum of Schrodinger operators
    Wen, ZY
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 43 - 56
  • [2] Weakly Equilibrium Cantor-type Sets
    Alexander P. Goncharov
    Potential Analysis, 2014, 40 : 143 - 161
  • [3] CANTOR-TYPE SETS IN HYPERBOLIC NUMBERS
    Balankin, A. S.
    Bory-Reyes, J.
    Luna-Elizarraras, M. E.
    Shapiro, M.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (04)
  • [4] ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH GENERAL POINT INTERACTIONS
    Brasche, J. F.
    Nizhnik, L. P.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 4 - 15
  • [5] Weakly Equilibrium Cantor-type Sets
    Goncharov, Alexander P.
    POTENTIAL ANALYSIS, 2014, 40 (02) : 143 - 161
  • [6] MINKOWSKI SUMS OF CANTOR-TYPE SETS
    Nikodem, Kazimierz
    Pales, Zsolt
    COLLOQUIUM MATHEMATICUM, 2010, 119 (01) : 95 - 108
  • [7] ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH LOCAL POINT INTERACTIONS
    BUSCHMANN, D
    STOLZ, G
    WEIDMANN, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 467 : 169 - 186
  • [8] On the Negative Spectrum of One-Dimensional Schrodinger Operators with Point Interactions
    Goloschapova, N.
    Oridoroga, L.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (01) : 1 - 14
  • [9] Spaces of Whitney functions on Cantor-type sets
    Arslan, B
    Goncharov, AP
    Kocatepe, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (02): : 225 - 238
  • [10] On solutions of nonlinear Schrodinger equations with Cantor-type spectrum
    de Monvel, AB
    Egorova, I
    JOURNAL D ANALYSE MATHEMATIQUE, 1997, 72 : 1 - 20