Semi-regular bipartite graphs and an extension of the marriage lemma

被引:0
|
作者
Ramras, M [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known Marriage Lemma states that a bipartite regular graph has a perfect matching. We define a bipartite graph G with bipartition (X, Y) to be semi-regular if both x --> deg x, x is an element of X and y --> deg y, y is an element of Y are constant. The purpose of this note is to show that if C is bipartite and semi-regular, and if \X\ < \Y\, then there is a matching which saturates \X\. (Actually, we prove this for a condition weaker than semi-regular.) As an application, we show that various subgraphs of a hypercube have saturating matchings. We also exhibit classes of bipartite graphs, some of them semi-regular, whose vertices are the vertices of various weights in the hypercube Q(n) but which are not subgraphs of Q(n).
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [21] SPECTRAL DETERMINATION OF SEMI-REGULAR POLYGONS
    Enciso, Alberto
    Gomez-Serrano, Javier
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 122 (03) : 399 - 419
  • [22] Semi-regular solution: General behavior
    Castellanos-Suarez, Aly J.
    Garcia-Sucre, Maximo
    CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) : 443 - 448
  • [23] ON SEMI-REGULAR FINITE CONTINUED FRACTIONS
    MYERSON, G
    ARCHIV DER MATHEMATIK, 1987, 48 (05) : 420 - 425
  • [24] ON SEMI-REGULAR AND MINIMAL HAUSDORFF EMBEDDINGS
    STRECKER, GE
    WATTEL, E
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 234 - &
  • [25] Dynamic of semi-regular polynomic applications
    Dinh, TC
    Sibony, N
    ARKIV FOR MATEMATIK, 2004, 42 (01): : 61 - 85
  • [26] Fracture toughness of semi-regular lattices
    Omidi, Milad
    St-Pierre, Luc
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 270
  • [27] ON THE SIZE OF EQUIFACETTED SEMI-REGULAR POLYTOPES
    Pisanski, Tomaz
    Schulte, Egon
    Weiss, Asia Ivic
    GLASNIK MATEMATICKI, 2012, 47 (02) : 421 - 430
  • [28] Remeshing schemes for semi-regular tilings
    Akleman, E
    Srinivasan, V
    Mandal, E
    INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2005, : 44 - 50
  • [29] Semi-regular Tilings of the Hyperbolic Plane
    Datta, Basudeb
    Gupta, Subhojoy
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (02) : 531 - 553
  • [30] ON THE TOPOLOGY GENERATED BY SEMI-REGULAR SETS
    DLASKA, K
    ERGUN, N
    GANSTER, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (11): : 1163 - 1170