Semi-regular bipartite graphs and an extension of the marriage lemma

被引:0
|
作者
Ramras, M [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known Marriage Lemma states that a bipartite regular graph has a perfect matching. We define a bipartite graph G with bipartition (X, Y) to be semi-regular if both x --> deg x, x is an element of X and y --> deg y, y is an element of Y are constant. The purpose of this note is to show that if C is bipartite and semi-regular, and if \X\ < \Y\, then there is a matching which saturates \X\. (Actually, we prove this for a condition weaker than semi-regular.) As an application, we show that various subgraphs of a hypercube have saturating matchings. We also exhibit classes of bipartite graphs, some of them semi-regular, whose vertices are the vertices of various weights in the hypercube Q(n) but which are not subgraphs of Q(n).
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [1] The Ihara-Zeta Function and the Spectrum of the Join of Two Semi-Regular Bipartite Graphs
    Xiaotong Li
    Xian’an Jin
    Qi Yan
    Graphs and Combinatorics, 2022, 38
  • [2] The Ihara-Zeta Function and the Spectrum of the Join of Two Semi-Regular Bipartite Graphs
    Li, Xiaotong
    Jin, Xian'an
    Yan, Qi
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [3] Heat kernel and Dn,r decomposition of some families of weakly semi-regular bipartite graphs
    Manilal, K.
    Sreekumar, K. G.
    Rajan, John K.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (01): : 69 - 77
  • [4] Semi-regular graphs of minimum independence number
    Nelson, P
    Radcliffe, A
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 237 - 263
  • [5] THE NUMBER OF DISJOINT PERFECT MATCHINGS IN SEMI-REGULAR GRAPHS
    Lu, Hongliang
    Wang, David G. L.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) : 11 - 38
  • [6] Semi-regular harmonic graph and equi-bipartite harmonic graph
    Liang, Yanting
    Liu, Bolian
    ARS COMBINATORIA, 2009, 93 : 51 - 63
  • [7] Regular and semi-regular polytopes I
    Coxeter, HSM
    MATHEMATISCHE ZEITSCHRIFT, 1940, 46 : 380 - 407
  • [8] SEMI-REGULAR RELATIONS AND DIGRAPHS
    CHOUDUM, SA
    PARTHASA.KR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1972, 75 (04): : 326 - &
  • [9] Spectra of semi-regular polytopes
    Saldanha N.C.
    Tomei C.
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1998, 29 (1) : 25 - 51
  • [10] REGULAR AND SEMI-REGULAR POLYTOPES .2.
    COXETER, HSM
    MATHEMATISCHE ZEITSCHRIFT, 1985, 188 (04) : 559 - 591