A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations

被引:14
|
作者
Kaygorodov, Ivan [1 ,2 ,3 ]
Popov, Yu. [3 ,4 ]
机构
[1] Univ Fed ABC, CMCC, Santo Andre, Brazil
[2] Univ Sao Paulo, BR-05508 Sao Paulo, Brazil
[3] Sobolev Inst Math, Novosibirsk, Russia
[4] Novosibirsk State Univ, Novosibirsk, Russia
基金
巴西圣保罗研究基金会;
关键词
Leibniz derivation; Malcev algebra; Jordan algebra; (-1,1)-Algebra; Nilpotent algebra; LIE-ALGEBRAS; NONSINGULAR DERIVATIONS; GENERALIZED DERIVATIONS; P-GROUPS; ORDERS; PREDERIVATIONS;
D O I
10.1016/j.jalgebra.2016.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moens proved that a finite-dimensional Lie algebra over a field of characteristic zero is nilpotent if and only if it has an invertible Leibniz-derivation. In this article we prove the analogous results for finite-dimensional Malcev, Jordan, (-1,1)-, right alternative, Zinbiel and Malcev-admissible noncommutative Jordan algebras over a field of characteristic zero. Also, we describe all Leibniz-derivations of semisimple Jordan, right alternative and Malcev algebras. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [31] On some classes of nilpotent Leibniz algebras
    Ayupov, SA
    Omirov, BA
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (01) : 15 - 24
  • [32] ON NILPOTENT LEIBNIZ n-ALGEBRAS
    Camacho, L. M.
    Casas, J. M.
    Gomez, J. R.
    Ladra, M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (03)
  • [33] Semisimple Leibniz algebras, their derivations and automorphisms
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    Zhao, Kaiming
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (10): : 2005 - 2019
  • [34] A note on outer derivations of Leibniz algebras
    Biyogmam, G. R.
    Tcheka, C.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (05) : 2190 - 2198
  • [35] ALMOST INNER DERIVATIONS OF LEIBNIZ ALGEBRAS
    Mansurog, Nil
    Ozkaya, Mucahit
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (04): : 969 - 981
  • [36] Nilpotent and invertible values in semiprime rings with generalized derivations
    Asma Ali
    Shakir Ali
    Vincenzo De Filippis
    Aequationes mathematicae, 2011, 82 : 123 - 134
  • [37] On the endomorphisms and derivations of some Leibniz algebras
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (01)
  • [38] Degenerations of Zinbiel and nilpotent Leibniz algebras
    Kaygorodov, Ivan
    Popov, Yury
    Pozhidaev, Alexandre
    Volkov, Yury
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 704 - 716
  • [39] On Extensions of Nilpotent Leibniz and Diassociative Algebras
    Mainellis, Erik
    JOURNAL OF LIE THEORY, 2022, 32 (04) : 997 - 1006
  • [40] Characterizing nilpotent Leibniz algebras by their multiplier
    Hosseini, Seyedeh Narges
    Edalatzadeh, Behrouz
    Salemkar, Ali Reza
    JOURNAL OF ALGEBRA, 2021, 578 : 356 - 370