A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations

被引:14
|
作者
Kaygorodov, Ivan [1 ,2 ,3 ]
Popov, Yu. [3 ,4 ]
机构
[1] Univ Fed ABC, CMCC, Santo Andre, Brazil
[2] Univ Sao Paulo, BR-05508 Sao Paulo, Brazil
[3] Sobolev Inst Math, Novosibirsk, Russia
[4] Novosibirsk State Univ, Novosibirsk, Russia
基金
巴西圣保罗研究基金会;
关键词
Leibniz derivation; Malcev algebra; Jordan algebra; (-1,1)-Algebra; Nilpotent algebra; LIE-ALGEBRAS; NONSINGULAR DERIVATIONS; GENERALIZED DERIVATIONS; P-GROUPS; ORDERS; PREDERIVATIONS;
D O I
10.1016/j.jalgebra.2016.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moens proved that a finite-dimensional Lie algebra over a field of characteristic zero is nilpotent if and only if it has an invertible Leibniz-derivation. In this article we prove the analogous results for finite-dimensional Malcev, Jordan, (-1,1)-, right alternative, Zinbiel and Malcev-admissible noncommutative Jordan algebras over a field of characteristic zero. Also, we describe all Leibniz-derivations of semisimple Jordan, right alternative and Malcev algebras. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [21] On the derivations of filiform Leibniz algebras
    Omirov, BA
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 677 - 685
  • [22] On the derivations of cyclic Leibniz algebras
    Semko, M. M.
    Skaskiv, L., V
    Yarovaya, O. A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 345 - 353
  • [23] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [24] On nilpotent properties of Leibniz algebras
    Patsourakos, Allexandros
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) : 3828 - 3834
  • [25] Derivations with Invertible Values in Flexible Algebras
    Devi, G. Lakshmi
    Jayalakshmi, K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (06): : 63 - 71
  • [26] Twisted Lie algebras by invertible derivations
    Basdouri, Imed
    Peyghan, Esmaeil
    Sadraoui, Mohamed Amin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (06)
  • [27] Nilpotent and invertible values in semiprime rings with generalized derivations
    Ali, Asma
    Ali, Shakir
    De Filippis, Vincenzo
    AEQUATIONES MATHEMATICAE, 2011, 82 (1-2) : 123 - 134
  • [28] On special subalgebras of derivations of Leibniz algebras
    Shermatova, Z.
    Khudoyberdiyev, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 34 (02): : 326 - 336
  • [29] On the algebra of derivations of some Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Mykola M.
    Subbotin, Igor Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 38 (01): : 63 - 86
  • [30] Generalized derivations with invertible or nilpotent values on multilinear polynomials
    Lin, JS
    Liu, CK
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) : 633 - 640