Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism

被引:18
|
作者
Jayakody, Lahiru N. [1 ,2 ,3 ]
Turner, Timothy Lee [1 ,4 ]
Yun, Eun Ju [1 ,2 ]
Kong, In Iok [1 ,2 ]
Liu, Jing-Jing [1 ,2 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA
关键词
S; cerevisiae; Xylose; Glycolaldehyde; Aldehydes toxicity; Gre2p; SCHEFFERSOMYCES-STIPITIS; PICHIA-STIPITIS; CO-FERMENTATION; YEAST; GLUCOSE; WATER; INHIBITORS; REDUCTASE; ETHANOL; BIOMASS;
D O I
10.1007/s00253-018-9216-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
引用
收藏
页码:8121 / 8133
页数:13
相关论文
共 50 条
  • [31] Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability
    Matsushika, Akinori
    Sawayama, Shigeki
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 162 (07) : 1952 - 1960
  • [32] Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    Matsushika, Akinori
    Inoue, Hiroyuki
    Murakami, Katsuji
    Takimura, Osamu
    Sawayama, Shigeki
    BIORESOURCE TECHNOLOGY, 2009, 100 (08) : 2392 - 2398
  • [33] Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability
    Akinori Matsushika
    Shigeki Sawayama
    Applied Biochemistry and Biotechnology, 2010, 162 : 1952 - 1960
  • [34] Saccharomyces cerevisiae engineered for xylose metabolism does not recognize xylose as a fermentable carbon source.
    Jin, YS
    Mu, Y
    Laplaza, JM
    Kang, MH
    Jeffries, TW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U272 - U272
  • [35] COFERMENTATION OF GLUCOSE AND XYLOSE TO ETHANOL BY A RESPIRATORY-DEFICIENT MUTANT OF SACCHAROMYCES-CEREVISIAE CO-CULTIVATED WITH A XYLOSE-FERMENTING YEAST
    LAPLACE, JM
    DELGENES, JP
    MOLETTA, R
    NAVARRO, JM
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1993, 75 (03): : 207 - 212
  • [36] Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    Tomohisa Hasunuma
    Tomoya Sanda
    Ryosuke Yamada
    Kazuya Yoshimura
    Jun Ishii
    Akihiko Kondo
    Microbial Cell Factories, 10
  • [37] Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    Hasunuma, Tomohisa
    Sanda, Tomoya
    Yamada, Ryosuke
    Yoshimura, Kazuya
    Ishii, Jun
    Kondo, Akihiko
    MICROBIAL CELL FACTORIES, 2011, 10
  • [38] Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains
    Santos, Angela A.
    Kretzer, Leonardo G.
    Dourado, Erika D. R.
    Rosa, Carlos A.
    Stambuk, Boris U.
    Alves, Sergio L.
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2025, 56 (01) : 91 - 104
  • [39] Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain
    Quinn Dickinson
    Scott Bottoms
    Li Hinchman
    Sean McIlwain
    Sheena Li
    Chad L. Myers
    Charles Boone
    Joshua J. Coon
    Alexander Hebert
    Trey K. Sato
    Robert Landick
    Jeff S. Piotrowski
    Microbial Cell Factories, 15
  • [40] Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production
    Huang, Mengtian
    Cui, Xinxin
    Zhang, Peining
    Jin, Zhuocheng
    Li, Huanan
    Liu, Jiashu
    Jiang, Zhengbing
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2024, 54 (08): : 1058 - 1067