Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism

被引:18
|
作者
Jayakody, Lahiru N. [1 ,2 ,3 ]
Turner, Timothy Lee [1 ,4 ]
Yun, Eun Ju [1 ,2 ]
Kong, In Iok [1 ,2 ]
Liu, Jing-Jing [1 ,2 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA
关键词
S; cerevisiae; Xylose; Glycolaldehyde; Aldehydes toxicity; Gre2p; SCHEFFERSOMYCES-STIPITIS; PICHIA-STIPITIS; CO-FERMENTATION; YEAST; GLUCOSE; WATER; INHIBITORS; REDUCTASE; ETHANOL; BIOMASS;
D O I
10.1007/s00253-018-9216-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
引用
收藏
页码:8121 / 8133
页数:13
相关论文
共 50 条
  • [21] Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis
    Jo, Jung-Hyun
    Park, Yong-Cheol
    Jin, Yong-Su
    Seo, Jin-Ho
    BIORESOURCE TECHNOLOGY, 2017, 241 : 88 - 94
  • [22] Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    Kuyper, M
    Toirkens, MJ
    Diderich, JA
    Winkler, AA
    van Dijken, JP
    Pronk, JT
    FEMS YEAST RESEARCH, 2005, 5 (10) : 925 - 934
  • [23] Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae
    Inoue, Hiroyuki
    Hashimoto, Seitaro
    Matsushika, Akinori
    Watanabe, Seiya
    Sawayama, Shigeki
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2014, 41 (12) : 1773 - 1781
  • [24] Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates
    Lopes, Daiane Dias
    Rosa, Carlos Augusto
    Hector, Ronald E.
    Dien, Bruce S.
    Mertens, Jeffrey A.
    Zachia Ayub, Marco Antonio
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2017, 44 (11) : 1575 - 1588
  • [25] Metabolic Changes Induced by Deletion of Transcriptional Regulator GCR2 in Xylose-Fermenting Saccharomyces cerevisiae
    Shin, Minhye
    Kim, Soo Rin
    MICROORGANISMS, 2020, 8 (10) : 1 - 13
  • [26] Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyes cerevisiae improves ethanol production
    Roca, C
    Nielsen, J
    Olsson, L
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (08) : 4732 - 4736
  • [27] Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies
    Li, Wen-Chao
    Zhu, Jia-Qing
    Zhao, Xiong
    Qin, Lei
    Xu, Tao
    Zhou, Xiao
    Li, Xia
    Li, Bing-Zhi
    Yuan, Ying-Jin
    RENEWABLE ENERGY, 2019, 139 : 1176 - 1183
  • [28] Ethanol Production from Xylo-oligosaccharides by Xylose-Fermenting Saccharomyces cerevisiae Expressing β-Xylosidase
    Fujii, Tatsuya
    Yu, Guoce
    Matsushika, Akinori
    Kurita, Asami
    Yano, Shinichi
    Murakami, Katsuji
    Sawayama, Shigeki
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2011, 75 (06) : 1140 - 1146
  • [29] Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    Jin, YS
    Laplaza, JM
    Jeffries, TW
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (11) : 6816 - 6825
  • [30] Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains
    dos Santos, Leandro Vieira
    Neitzel, Thiago
    Lima, Cleiton Santos
    de Carvalho, Lucas Miguel
    de Lima, Tatiani Brenelli
    Ienczak, Jaciane Lutz
    Correa, Thamy Livia Ribeiro
    Pereira, Goncalo Amarante Guimaraes
    MICROBIOLOGICAL RESEARCH, 2025, 290