Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism

被引:18
|
作者
Jayakody, Lahiru N. [1 ,2 ,3 ]
Turner, Timothy Lee [1 ,4 ]
Yun, Eun Ju [1 ,2 ]
Kong, In Iok [1 ,2 ]
Liu, Jing-Jing [1 ,2 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA
关键词
S; cerevisiae; Xylose; Glycolaldehyde; Aldehydes toxicity; Gre2p; SCHEFFERSOMYCES-STIPITIS; PICHIA-STIPITIS; CO-FERMENTATION; YEAST; GLUCOSE; WATER; INHIBITORS; REDUCTASE; ETHANOL; BIOMASS;
D O I
10.1007/s00253-018-9216-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
引用
收藏
页码:8121 / 8133
页数:13
相关论文
共 50 条
  • [1] Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism
    Lahiru N. Jayakody
    Timothy Lee Turner
    Eun Ju Yun
    In Iok Kong
    Jing-Jing Liu
    Yong-Su Jin
    Applied Microbiology and Biotechnology, 2018, 102 : 8121 - 8133
  • [2] Hybridization Improves Inhibitor Tolerance of Xylose-fermenting Saccharomyces cerevisiae
    Liu, He
    Zhu, Jia-Qing
    Li, Xia
    Li, Hui-Ze
    Qin, Lei
    Li, Hao
    Wang, Xin
    Bai, Xue
    Li, Wen-Chao
    Li, Bing-Zhi
    Yuan, Ying-Jin
    BIORESOURCES, 2017, 12 (03): : 4737 - 4753
  • [3] Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains
    Sonderegger, M
    Jeppsson, M
    Larsson, C
    Gorwa-Grauslund, MF
    Boles, E
    Olsson, L
    Spencer-Martins, I
    Hahn-Hägerdal, B
    Sauer, U
    BIOTECHNOLOGY AND BIOENGINEERING, 2004, 87 (01) : 90 - 98
  • [4] Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae
    Salusjärvi, L
    Poutanen, M
    Pitkänen, JP
    Koivistoinen, H
    Aristidou, A
    Kalkkinen, N
    Ruohonen, L
    Penttilä, M
    YEAST, 2003, 20 (04) : 295 - 314
  • [5] Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
    Peng, Bingyin
    Shen, Yu
    Li, Xiaowei
    Chen, Xiao
    Hou, Jin
    Bao, Xiaoming
    METABOLIC ENGINEERING, 2012, 14 (01) : 9 - 18
  • [6] Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains
    Yu, S
    Jeppsson, H
    HahnHagerdal, B
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1995, 44 (3-4) : 314 - 320
  • [7] Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    Jeppsson, M
    Träff, K
    Johansson, B
    Hahn-Hägerdal, B
    Gorwa-Grauslund, MF
    FEMS YEAST RESEARCH, 2003, 3 (02) : 167 - 175
  • [8] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Kato, Hiroko
    Suyama, Hiroaki
    Yamada, Ryosuke
    Hasunuma, Tomohisa
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 94 (06) : 1585 - 1592
  • [9] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Hiroko Kato
    Hiroaki Suyama
    Ryosuke Yamada
    Tomohisa Hasunuma
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2012, 94 : 1585 - 1592
  • [10] Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae
    Jeong, Deokyeol
    Park, Sujeong
    Evelina, Grace
    Kim, Suhyeung
    Park, Heeyoung
    Lee, Je Min
    Kim, Sun-Ki
    Kim, In Jung
    Oh, Eun Joong
    Kim, Soo Rin
    BIORESOURCE TECHNOLOGY, 2024, 393