Infinite Families of Circular and Mobius Ladders that are Total Domination Game Critical

被引:5
|
作者
Henning, Michael A. [1 ]
Klavzar, Sandi [2 ,3 ,4 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
基金
新加坡国家研究基金会;
关键词
Total domination game; Game total domination number; Critical graph; Circular ladder; Mobius ladder; 3/5-CONJECTURE; 3/4-CONJECTURE; FORESTS; NUMBER;
D O I
10.1007/s40840-018-0635-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let .tg(G) denote the game total domination number of a graph G, and let G| v mean that a vertex v of G is declared to be already totally dominated. A graph G is total domination game critical if.tg(G| v) <.tg(G) holds for every vertex v in G. If.tg(G) = k, then G is further called k-.tg- critical. In this paper, we prove that the circular ladder C4k K2 is 4k-.tg- critical and that the Mobius ladder ML2k is 2k-.tg- critical.
引用
收藏
页码:2141 / 2149
页数:9
相关论文
共 50 条
  • [1] Infinite Families of Circular and Möbius Ladders that are Total Domination Game Critical
    Michael A. Henning
    Sandi Klavžar
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2141 - 2149
  • [2] On α-total domination in prisms and Mobius ladders
    Chen, Xue-gang
    Zhang, Xu
    UTILITAS MATHEMATICA, 2018, 109 : 337 - 349
  • [3] Game total domination critical graphs
    Henning, Michael A.
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 28 - 37
  • [4] Number of embeddings of circular and Mobius ladders on surfaces
    Yang Yan
    Liu YanPei
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1393 - 1405
  • [5] 4-Total domination game critical graphs
    Worawannotai, Chalermpong
    Charoensitthichai, Karnchana
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [6] Trees with equal total domination and game total domination numbers
    Henning, Michael A.
    Rall, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2017, 226 : 58 - 70
  • [7] Total Version of the Domination Game
    Michael A. Henning
    Sandi Klavžar
    Douglas F. Rall
    Graphs and Combinatorics, 2015, 31 : 1453 - 1462
  • [8] TOTAL CONNECTED DOMINATION GAME
    Bujtas, Csilla
    Henning, Michael A.
    Irsic, Vesna
    Klavzar, Sandi
    OPUSCULA MATHEMATICA, 2021, 41 (04) : 453 - 464
  • [9] Total Embedding Distributions of Circular Ladders
    Chen, Yichao
    Gross, Jonathan L.
    Mansour, Toufik
    JOURNAL OF GRAPH THEORY, 2013, 74 (01) : 32 - 57
  • [10] On the Game Total Domination Number
    Bujtas, Csilla
    GRAPHS AND COMBINATORICS, 2018, 34 (03) : 415 - 425