Total domination;
alpha-total domination;
Prism;
Mobius ladder;
GRAPHS;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G = (V, E) be a graph with no isolated vertex. A subset of vertices S is a total dominating set if every vertex of G is adjacent to some vertex of S. For some a with 0 < alpha <= 1, a total dominating set S in G is an a-total dominating set if for every vertex v is an element of V \ S, vertical bar N(v) boolean AND S vertical bar >= alpha vertical bar N(v)vertical bar. The alpha-total domination number of G, denoted by gamma(alpha t)(G), is the minimum cardinality of an alpha-total dominating set of G. In [1], Henning and Rad posed the following question: Let G be a connected cubic graph with order n. Is it true that gamma(alpha t)(G) <= (2n)(3) for 1/3 < (2)(3) and gamma(alpha t)(G) <= (3n)(4) for (2)(3) < alpha <= 1 ? In this paper, we find alpha-total domination numbers for two classes of connected cubic graphs, namely the prisms and the M5bius ladders. All the exactly values are less than the hounds in the question. We give a positive answer toward this question on these two classes of connected cubic graphs.
机构:
Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, HungaryBudapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
Katona, Gyula Y.
Papp, Laszlo F.
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, HungaryBudapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
机构:
Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South AfricaUniv Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
Henning, Michael A.
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Ljubljana, Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Azarija, Jernej
Henning, Michael A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Pure & Appl Math, Auckland Pk 2006, South AfricaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Henning, Michael A.
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Ljubljana, Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Klavzar, Sandi
ELECTRONIC JOURNAL OF COMBINATORICS,
2017,
24
(01):
机构:
Univ Maribor, FEECS, Koroska Cesta 46, Maribor 2000, Slovenia
Fac Informat Studies, Ljubljanska Cesta 31a, Novo Mesto 8000, SloveniaUniv Maribor, FEECS, Koroska Cesta 46, Maribor 2000, Slovenia