Infinite Families of Circular and Mobius Ladders that are Total Domination Game Critical

被引:5
|
作者
Henning, Michael A. [1 ]
Klavzar, Sandi [2 ,3 ,4 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
基金
新加坡国家研究基金会;
关键词
Total domination game; Game total domination number; Critical graph; Circular ladder; Mobius ladder; 3/5-CONJECTURE; 3/4-CONJECTURE; FORESTS; NUMBER;
D O I
10.1007/s40840-018-0635-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let .tg(G) denote the game total domination number of a graph G, and let G| v mean that a vertex v of G is declared to be already totally dominated. A graph G is total domination game critical if.tg(G| v) <.tg(G) holds for every vertex v in G. If.tg(G) = k, then G is further called k-.tg- critical. In this paper, we prove that the circular ladder C4k K2 is 4k-.tg- critical and that the Mobius ladder ML2k is 2k-.tg- critical.
引用
收藏
页码:2141 / 2149
页数:9
相关论文
共 50 条
  • [31] A note on the total domination vertex critical graphs
    Chen, Xue-gang
    Sohn, Moo Young
    ARS COMBINATORIA, 2008, 88 : 289 - 294
  • [32] On questions on (total) domination vertex critical graphs
    Mojdeh, Doost Ali
    Hasni, Roslan
    ARS COMBINATORIA, 2010, 96 : 405 - 419
  • [33] The diameter of total domination vertex critical graphs
    Goddard, W
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    DISCRETE MATHEMATICS, 2004, 286 (03) : 255 - 261
  • [34] Perfect Matchings in Total Domination Critical Graphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2011, 27 (05) : 685 - 701
  • [35] Locating-total domination critical graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 45 : 227 - 234
  • [36] On the total restrained domination edge critical graphs
    Koh, K. M.
    Maleki, Zeinab
    Omoomi, Behnaz
    ARS COMBINATORIA, 2013, 109 : 97 - 112
  • [37] TRANSVERSAL GAME ON HYPERGRAPHS AND THE 3/4-CONJECTURE ON THE TOTAL DOMINATION GAME
    Bujtas, Csilla
    Henning, Michael A.
    Tuza, Zsolt
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1830 - 1847
  • [38] On total coloring and equitable total coloring of infinite snark families
    Palma, Miguel A. D. R.
    Goncalves, Isabel F. A.
    Sasaki, Diana
    Dantas, Simone
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2619 - 2637
  • [39] DOMINATION GAME: EXTREMAL FAMILIES FOR THE 3/5-CONJECTURE FOR FORESTS
    Henning, Michael A.
    Loewenstein, Christian
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 369 - 381
  • [40] Domination game: Extremal families of graphs for 3/5-conjectures
    Bresar, Bostjan
    Klavzar, Sandi
    Kosmrlj, Gasper
    Rallc, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1308 - 1316