Ac-driven Nonlinear Schrodinger Equation and Double Sine-Gordon Equation: Numerical Study of Complexes of Localized States

被引:0
|
作者
Zemlyanaya, E. V. [1 ]
Alexeeva, N. V. [2 ]
Atanasova, P. Kh [3 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
[2] Univ Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
[3] Paisii Hilendarski Univ Plovdiv, Fac Math & Infomat, Plovdiv 4003, Bulgaria
关键词
Nonlinear Schrodinger equation; double sine-Gordon equation; soliton; fluxon; stabitlity; bifurcation; numerical continuation; SOLITONS;
D O I
10.1063/1.4902276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate complexes of localized states in two dynamical systems: (i) directly driven nonlinear Schrodinger equation (NLS) and (ii) double sine-Gordon equation (2SG). Our numerical approach is based on the numerical continuation with respect to the control parameters of the stationary solutions and stability analysis by means of the linearized eigenvalue problem. We show that in the weak damping case the directly driven NLS equation holds stable and unstable multi-soliton complexes. We also show that the second harmonic changes properties and increases the complexity of coexisting static fluxons of 2SG equation.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 50 条
  • [31] MODULATION OF THE BREATHER FREQUENCY IN THE AC-DRIVEN SINE-GORDON SYSTEM WITH LOSS
    LOMDAHL, PS
    SAMUELSEN, MR
    PHYSICS LETTERS A, 1988, 128 (08) : 427 - 432
  • [32] PERSISTENT BREATHER EXCITATIONS IN AN AC-DRIVEN SINE-GORDON SYSTEM WITH LOSS
    LOMDAHL, PS
    SAMUELSEN, MR
    PHYSICAL REVIEW A, 1986, 34 (01): : 664 - 667
  • [33] π-Kinks in the parametrically driven sine-Gordon equation and applications
    Mitkov, I
    Zharnitsky, V
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 123 (1-4) : 301 - 307
  • [34] PARAMETRICALLY DRIVEN SINE-GORDON EQUATION AND PAINLEVE TEST
    STEEB, WH
    LOUW, JA
    PHYSICS LETTERS A, 1985, 113 (02) : 61 - 62
  • [35] Weak solutions to a nonlinear variational sine-Gordon equation
    Hu, Yanbo
    Wang, Guodong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 1 - 11
  • [36] A Numerical Algorithm of Solving the Forced sine-Gordon Equation
    Bezen, Alexandre
    2008 INTERNATIONAL MULTICONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (IMCSIT), VOLS 1 AND 2, 2008, : 238 - 242
  • [37] CHAOTIC MOTION AND CONTROL OF THE DRIVEN-DAMPED DOUBLE SINE-GORDON EQUATION
    Zheng, Hang
    Xia, Yonghui
    Pinto, Manuel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7151 - 7167
  • [38] MULTIDIMENSIONAL KINK SOLUTIONS OF THE DOUBLE SINE-GORDON EQUATION
    BURT, PB
    LETTERE AL NUOVO CIMENTO, 1980, 28 (03): : 104 - 106
  • [39] Numerical approximations and conservation laws for the Sine-Gordon equation
    Partohaghighi, Mohammad
    Inc, Mustafa
    Yusuf, Abdullahi
    Sulaiman, Tukur A.
    Bayram, Mustafa
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [40] Tension spline solution of nonlinear sine-Gordon equation
    Jalil Rashidinia
    Reza Mohammadi
    Numerical Algorithms, 2011, 56 : 129 - 142