A Numerical Algorithm of Solving the Forced sine-Gordon Equation

被引:0
|
作者
Bezen, Alexandre [1 ]
机构
[1] RMIT Univ, Sch Life & Phys Sci, Melbourne, Vic 3001, Australia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The numerical method of solving the problem of small perturbations of a stationary traveling solution (soliton) of well-known in physics sin-Gordon equation is presented. The solution is reduced to solving a set of linear hyperbolic partial differential equations. The Riemann function method is used to find a solution of a linear PDE. The value of the Riemann function at any particular point is found as a solution of an ordinary differential equation. An algorithm of calculation of a double integral over a triangular integration area is given.
引用
收藏
页码:238 / 242
页数:5
相关论文
共 50 条
  • [1] METHOD FOR SOLVING SINE-GORDON EQUATION
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    PHYSICAL REVIEW LETTERS, 1973, 30 (25) : 1262 - 1264
  • [2] BIFURCATION IN A PARAMETRICALLY FORCED SINE-GORDON EQUATION
    SEISL, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T99 - T102
  • [3] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):
  • [4] ON THE METHOD FOR SOLVING THE COMPLEX SINE-GORDON EQUATION
    HANG, NN
    LETTERE AL NUOVO CIMENTO, 1983, 38 (02): : 60 - 64
  • [5] A maximum principle with applications to the forced Sine-Gordon equation
    Robles-Pérez, AM
    NONLINEAR ANALYSIS AND ITS APPLICATIONS TO DIFFERENTIAL EQUATIONS, 2001, 43 : 347 - 356
  • [6] NUMERICAL STUDY OF PERTURBED SINE-GORDON EQUATION
    SEISL, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04): : T121 - T125
  • [7] Numerical inverse scattering for the sine-Gordon equation
    Deconinck, Bernard
    Trogdon, Thomas
    Yang, Xin
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 399 : 159 - 172
  • [8] NUMERICAL-SOLUTION OF THE SINE-GORDON EQUATION
    GUO, BY
    PASCUAL, PJ
    RODRIGUEZ, MJ
    VAZQUEZ, L
    APPLIED MATHEMATICS AND COMPUTATION, 1986, 18 (01) : 1 - 14
  • [9] Pade numerical schemes for the sine-Gordon equation
    Martin-Vergara, Francisca
    Rus, Francisco
    Villatoro, Francisco R.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 232 - 243
  • [10] NUMERICAL STUDY OF A NONLOCAL SINE-GORDON EQUATION
    Alfimov, G.
    Pierantozzi, T.
    Vazquez, L.
    NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 121 - 128