Ac-driven Nonlinear Schrodinger Equation and Double Sine-Gordon Equation: Numerical Study of Complexes of Localized States

被引:0
|
作者
Zemlyanaya, E. V. [1 ]
Alexeeva, N. V. [2 ]
Atanasova, P. Kh [3 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
[2] Univ Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
[3] Paisii Hilendarski Univ Plovdiv, Fac Math & Infomat, Plovdiv 4003, Bulgaria
关键词
Nonlinear Schrodinger equation; double sine-Gordon equation; soliton; fluxon; stabitlity; bifurcation; numerical continuation; SOLITONS;
D O I
10.1063/1.4902276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate complexes of localized states in two dynamical systems: (i) directly driven nonlinear Schrodinger equation (NLS) and (ii) double sine-Gordon equation (2SG). Our numerical approach is based on the numerical continuation with respect to the control parameters of the stationary solutions and stability analysis by means of the linearized eigenvalue problem. We show that in the weak damping case the directly driven NLS equation holds stable and unstable multi-soliton complexes. We also show that the second harmonic changes properties and increases the complexity of coexisting static fluxons of 2SG equation.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 50 条
  • [1] Nonlinear Lorentzian-type standing wave solutions of ac-driven sine-Gordon equation
    Raju, Thokala Soloman
    PHYSICS LETTERS A, 2021, 414
  • [2] Direct approach to the study of soliton perturbations of the nonlinear Schrodinger equation and the sine-Gordon equation
    Yan, J
    Tang, Y
    Zhou, GH
    Chen, ZH
    PHYSICAL REVIEW E, 1998, 58 (01): : 1064 - 1073
  • [3] Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrodinger equation
    Barashenkov, IV
    Smirnov, YS
    Alexeeva, NV
    PHYSICAL REVIEW E, 1998, 57 (02) : 2350 - 2364
  • [4] Dynamics of ac-driven sine-Gordon equation for long Josephson junctions with fast varying perturbation
    Gul, Zamin
    Ali, Amir
    Ahmad, Irshad
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 103 - 110
  • [5] Optical solitons to the resonance nonlinear Schrodinger equation by Sine-Gordon equation method
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 541 - 549
  • [6] NUMERICAL STUDY OF PERTURBED SINE-GORDON EQUATION
    SEISL, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04): : T121 - T125
  • [7] DEFORMING SOME SPECIAL SOLUTIONS OF THE SINE-GORDON EQUATION TO THAT OF THE DOUBLE SINE-GORDON EQUATION
    LOU, SY
    NI, GJ
    PHYSICS LETTERS A, 1989, 140 (1-2) : 33 - 35
  • [8] NUMERICAL STUDY OF A NONLOCAL SINE-GORDON EQUATION
    Alfimov, G.
    Pierantozzi, T.
    Vazquez, L.
    NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 121 - 128
  • [9] STABILITY OF BREATHERS IN THE AC-DRIVEN SINE-GORDON SYSTEM
    GRONBECHJENSEN, N
    MALOMED, BA
    SAMUELSEN, MR
    PHYSICS LETTERS A, 1992, 166 (5-6) : 347 - 351
  • [10] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):