Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrodinger equation

被引:55
|
作者
Barashenkov, IV [1 ]
Smirnov, YS [1 ]
Alexeeva, NV [1 ]
机构
[1] Univ Cape Town, Dept Appl Math, ZA-7700 Rondebosch, South Africa
关键词
D O I
10.1103/PhysRevE.57.2350
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study bifurcations of localized stationary solutions of the externally driven, damped nonlinear Schrodinger equation i Psi(t) + Psi(xx) +2\Psi\(2) Psi = -i gamma Psi - he(i Omega t) in the region of large gamma (gamma>1/2). For each pair of h and gamma, there are two coexisting solitons Psi(+) and Psi(-). As the driver's strength h increases for the fixed gamma, the Psi(+) soliton merges with the flat background while the Psi(-) forms a stationary collective state with two "Psi pluses": Psi(-) --> Psi((+-+)). We obtain other stationary solutions and identify them as multisoliton complexes Psi((++)), Psi((--)), Psi((-+)), Psi((---)), Psi((-+-)), etc.
引用
收藏
页码:2350 / 2364
页数:15
相关论文
共 50 条
  • [1] BOUND SOLITONS IN THE AC-DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION
    CAI, D
    BISHOP, AR
    GRONBECHJENSEN, N
    MALOMED, BA
    PHYSICAL REVIEW E, 1994, 49 (02) : 1677 - 1684
  • [2] Existence threshold for the ac-driven damped nonlinear Schrodinger solitons
    Barashenkov, IV
    Zemlyanaya, EV
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 132 (03) : 363 - 372
  • [3] Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons
    Barashenkov, IV
    Smirnov, YS
    PHYSICAL REVIEW E, 1996, 54 (05): : 5707 - 5725
  • [4] Breakup of a multisoliton state of the linearly damped nonlinear Schrodinger equation
    Prilepsky, Jaroslaw E.
    Derevyanko, Stanislav A.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [5] Ac-driven Nonlinear Schrodinger Equation and Double Sine-Gordon Equation: Numerical Study of Complexes of Localized States
    Zemlyanaya, E. V.
    Alexeeva, N. V.
    Atanasova, P. Kh
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 217 - 225
  • [6] Controlled merging and annihilation of localised dissipative structures in an AC-driven damped nonlinear Schrodinger system
    Jang, Jae K.
    Erkintalo, Miro
    Luo, Kathy
    Oppo, Gian-Luca
    Coen, Stephane
    Murdoch, Stuart G.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [7] POSSIBLE SOLITON MOTION IN AC-DRIVEN DAMPED NONLINEAR LATTICES
    CAI, D
    SANCHEZ, A
    BISHOP, AR
    FALO, F
    FLORIA, LM
    PHYSICAL REVIEW B, 1994, 50 (13): : 9652 - 9655
  • [8] AC-DRIVEN DAMPED TODA LATTICE
    KUUSELA, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (10-12) : 327 - 351
  • [9] PROPAGATING SOLITONS IN DAMPED AC-DRIVEN CHAINS
    MALOMED, BA
    PHYSICAL REVIEW A, 1992, 45 (06): : 4097 - 4101
  • [10] OSCILLATING SOLITONS OF THE DRIVEN, DAMPED NONLINEAR SCHRODINGER EQUATION
    Zemlyanaya, E. V.
    Alexeeva, N. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (03) : 870 - 876