Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [42] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    ERCIM NEWS, 2020, (122): : 47 - 48
  • [43] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [44] Scaling Deep Learning Models for Spectrum Anomaly Detection
    Li, Zhijing
    Xiao, Zhujun
    Wang, Bolun
    Zhao, Ben Y.
    Zheng, Haitao
    PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19), 2019, : 291 - 300
  • [45] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [46] Network Traffic Anomaly Detection via Deep Learning
    Fotiadou, Konstantina
    Velivassaki, Terpsichori-Helen
    Voulkidis, Artemis
    Skias, Dimitrios
    Tsekeridou, Sofia
    Zahariadis, Theodore
    INFORMATION, 2021, 12 (05)
  • [47] Deep Learning for Time Series Anomaly Detection: A Survey
    Darban, Zahra zamanzadeh
    Webb, Geoffrey i.
    Pan, Shirui
    Aggarwal, Charu
    Salehi, Mahsa
    ACM COMPUTING SURVEYS, 2025, 57 (01)
  • [48] Learning deep event models for crowd anomaly detection
    Feng, Yachuang
    Yuan, Yuan
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2017, 219 : 548 - 556
  • [49] A deep learning anomaly detection framework with explainability and robustness
    Nguyen, Manh-Dung
    Bouaziz, Anis
    Valdes, Valeria
    Rosa Cavalli, Ana
    Mallouli, Wissam
    de Oca, Edgardo Montes
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [50] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12