Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Energy Anomaly Detection with Forecasting and Deep Learning
    Hollingsworth, Keith
    Rouse, Kathryn
    Cho, Jin
    Harris, Austin
    Sartipi, Mina
    Sozer, Sevin
    Enevoldson, Bryce
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4921 - 4925
  • [22] Population Anomaly Detection through Deep Gaussianization
    Tolpin, David
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1330 - 1336
  • [23] Robust Deep Learning Methods for Anomaly Detection
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Chawla, Sanjay
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3507 - 3508
  • [24] Leveraging Deep Learning for Network Anomaly Detection
    Kourtis, Michail-Alexandros
    Oikonomakis, Andreas
    Papadopoulos, Dimitris
    Xylouris, George
    Chochliouros, Ioannis P.
    2021 SIXTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2021, : 91 - 96
  • [25] Hybrid deep learning and HOF for Anomaly Detection
    Hamdi, Slim
    Bouindour, Samir
    Loukil, Kais
    Snoussi, Hichem
    Abid, Mohamed
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 575 - 580
  • [26] ANOMALIB: A DEEP LEARNING LIBRARY FOR ANOMALY DETECTION
    Akcay, Samet
    Ameln, Dick
    Vaidya, Ashwin
    Lakshmanan, Barath
    Ahuja, Nilesh
    Genc, Utku
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1706 - 1710
  • [27] Visual Anomaly Detection by Distributed Deep Learning
    Hu, Ruiguang
    Sun, Peng
    Ge, Yifan
    AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [28] Classical and Deep Learning Classifiers for Anomaly Detection
    Raza, Manahil
    Qayyum, Usman
    PROCEEDINGS OF 2019 16TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2019, : 614 - 618
  • [29] Anomaly Detection in Phonocardiogram Employing Deep Learning
    Sujadevi, V. G.
    Soman, K. P.
    Vinayakumar, R.
    Sankar, A. U. Prem
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 525 - 534
  • [30] Deep Visual Anomaly Detection with Negative Learning
    Lee, Jin-Ha
    Astrid, Marcella
    Zaheer, Muhammad Zaigham
    Lee, Seung-Ik
    FRONTIERS OF COMPUTER VISION, IW-FCV 2021, 2021, 1405 : 218 - 232