Ranking with predictive clustering trees

被引:0
|
作者
Todorovski, L
Blockeel, H
Dzeroski, S
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, SI-1000 Ljubljana, Slovenia
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel class of applications of predictive clustering trees is addressed, namely ranking. Predictive clustering trees, as implemented in CLUS, allow for predicting multiple target variables. This approach makes sense especially if the target variables are not independent of each other. This is typically the case in ranking, where the (relative) performance of several approaches on the same task has to be predicted from a given description of the task. We propose to use predictive clustering trees for ranking. As compared to existing ranking approaches which are instance-based, our approach also allows for an explanation of the predicted rankings. We illustrate our approach on the task of ranking machine learning algorithms, where the (relative) performance of the learning algorithms on a dataset has to be predicted from a given dataset description.
引用
收藏
页码:444 / 455
页数:12
相关论文
共 50 条
  • [41] Ranking and clustering Linked Data
    Franz, Thomas
    Staab, Steffen
    Datenbank-Spektrum, 2010, 10 (02) : 67 - 72
  • [42] Semi-Supervised Predictive Clustering Trees for (Hierarchical) Multi-Label Classification
    Levatic, Jurica
    Ceci, Michelangelo
    Kocev, Dragi
    Dzeroski, Saso
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [43] Ranking Universities via Clustering
    Stoupas, George L.
    Sidiropoulos, Antonis
    Katsaros, Dimitrios
    Manolopoulos, Yannis
    18TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2021), 2021, : 1541 - 1542
  • [44] Speedup clustering with hierarchical ranking
    Zhou, Hanjun
    Sander, Joerg
    ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 1205 - +
  • [45] Clustering with shallow trees
    Bailly-Bechet, M.
    Bradde, S.
    Braunstein, A.
    Flaxman, A.
    Foini, L.
    Zecchina, R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [46] RANKING THE BEST BINARY-TREES
    ANILY, S
    HASSIN, R
    SIAM JOURNAL ON COMPUTING, 1989, 18 (05) : 882 - 892
  • [47] On-line ranking algorithms for trees
    Lee, CW
    Juan, JST
    FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, : 46 - 51
  • [48] Wood quality ranking of plantation trees
    Morrison, D
    Potter, S
    Thomas, B
    Watson, P
    TAPPI JOURNAL, 2000, 83 (12): : 55 - 55
  • [49] Improving the ranking performance of decision trees
    Wang, Bin
    Zhang, Harry
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 461 - 472
  • [50] RANKING AND UNRANKING OF AVL-TREES
    LI, LW
    SIAM JOURNAL ON COMPUTING, 1986, 15 (04) : 1025 - 1035