Ranking with predictive clustering trees

被引:0
|
作者
Todorovski, L
Blockeel, H
Dzeroski, S
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, SI-1000 Ljubljana, Slovenia
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel class of applications of predictive clustering trees is addressed, namely ranking. Predictive clustering trees, as implemented in CLUS, allow for predicting multiple target variables. This approach makes sense especially if the target variables are not independent of each other. This is typically the case in ranking, where the (relative) performance of several approaches on the same task has to be predicted from a given description of the task. We propose to use predictive clustering trees for ranking. As compared to existing ranking approaches which are instance-based, our approach also allows for an explanation of the predicted rankings. We illustrate our approach on the task of ranking machine learning algorithms, where the (relative) performance of the learning algorithms on a dataset has to be predicted from a given dataset description.
引用
收藏
页码:444 / 455
页数:12
相关论文
共 50 条
  • [21] Ensembles of extremely randomized predictive clustering trees for predicting structured outputs
    Kocev, Dragi
    Ceci, Michelangelo
    Stepisnik, Tomaz
    MACHINE LEARNING, 2020, 109 (11) : 2213 - 2241
  • [22] Helping predictive analytics interpretation using regression trees and clustering perturbation
    Parisot, Olivier
    Didry, Yoanne
    Tamisier, Thomas
    Otjacques, Benoit
    JOURNAL OF DECISION SYSTEMS, 2015, 24 (01) : 55 - 72
  • [23] Option Predictive Clustering Trees for Hierarchical Multi-label Classification
    Perdih, Tomaz Stepisnik
    Osojnik, Aljaz
    Dzeroski, Sao
    Kocev, Dragi
    DISCOVERY SCIENCE, DS 2017, 2017, 10558 : 116 - 123
  • [24] Ensembles of extremely randomized predictive clustering trees for predicting structured outputs
    Dragi Kocev
    Michelangelo Ceci
    Tomaž Stepišnik
    Machine Learning, 2020, 109 : 2213 - 2241
  • [25] Hierarchical multi-classification with predictive clustering trees in functional genomics
    Struyf, J
    Dzeroski, S
    Blockeel, H
    Clare, A
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3808 : 272 - 283
  • [26] Bagging Ranking Trees
    Clemencon, Stephan
    Depecker, Marine
    Vayatis, Nicolas
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 658 - +
  • [27] Soft ranking in clustering
    Rovetta, Stefano
    Masulli, Francesco
    Filippone, Maurizio
    NEUROCOMPUTING, 2009, 72 (7-9) : 2028 - 2031
  • [28] Community structure models are improved by exploiting taxonomic rank with predictive clustering trees
    Levatic, Jurica
    Kocev, Dragi
    Debeljak, Marko
    Dzeroski, Saso
    ECOLOGICAL MODELLING, 2015, 306 : 294 - 304
  • [29] Improving bag-of-visual-words image retrieval with predictive clustering trees
    Dimitrovski, Ivica
    Kocev, Dragi
    Loskovska, Suzana
    Dzeroski, Saso
    INFORMATION SCIENCES, 2016, 329 : 851 - 865
  • [30] Analysis of time series data on agroecosystem vegetation using predictive clustering trees
    Debeljak, Marko
    Squire, Geoffrey R.
    Kocev, Dragi
    Hawes, Cathy
    Young, Mark W.
    Dzeroski, Saso
    ECOLOGICAL MODELLING, 2011, 222 (14) : 2524 - 2529