Ranking with predictive clustering trees

被引:0
|
作者
Todorovski, L
Blockeel, H
Dzeroski, S
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, SI-1000 Ljubljana, Slovenia
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel class of applications of predictive clustering trees is addressed, namely ranking. Predictive clustering trees, as implemented in CLUS, allow for predicting multiple target variables. This approach makes sense especially if the target variables are not independent of each other. This is typically the case in ranking, where the (relative) performance of several approaches on the same task has to be predicted from a given description of the task. We propose to use predictive clustering trees for ranking. As compared to existing ranking approaches which are instance-based, our approach also allows for an explanation of the predicted rankings. We illustrate our approach on the task of ranking machine learning algorithms, where the (relative) performance of the learning algorithms on a dataset has to be predicted from a given dataset description.
引用
收藏
页码:444 / 455
页数:12
相关论文
共 50 条
  • [1] Oblique predictive clustering trees
    Stepisnik, Tomaz
    Kocev, Dragi
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [2] Network Regression with Predictive Clustering Trees
    Stojanova, Daniela
    Ceci, Michelangelo
    Appice, Annalisa
    Dzeroski, Saso
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 333 - 348
  • [3] Multivariate Predictive Clustering Trees for Classification
    Stepisnik, Tomaz
    Kocev, Dragi
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 331 - 341
  • [4] Network regression with predictive clustering trees
    Daniela Stojanova
    Michelangelo Ceci
    Annalisa Appice
    Sašo Džeroski
    Data Mining and Knowledge Discovery, 2012, 25 : 378 - 413
  • [5] Network regression with predictive clustering trees
    Stojanova, Daniela
    Ceci, Michelangelo
    Appice, Annalisa
    Dzeroski, Saso
    DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 25 (02) : 378 - 413
  • [6] Option Predictive Clustering Trees for Multilabel Classification
    Stepisnik, Tomaz
    Kocev, Dragi
    Dzeroski, Saso
    ACTA POLYTECHNICA HUNGARICA, 2020, 17 (10) : 109 - 128
  • [7] Analysis of time series data with predictive clustering trees
    Dzeroski, Saso
    Gjorgjioski, Valentin
    Slavkov, Ivica
    Struyf, Jan
    KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES, 2007, 4747 : 63 - +
  • [8] Global and Local Spatial Autocorrelation in Predictive Clustering Trees
    Stojanova, Daniela
    Ceci, Michelangelo
    Appice, Annalisa
    Malerba, Donato
    Dzeroski, Saso
    DISCOVERY SCIENCE, 2011, 6926 : 307 - +
  • [9] Semi-supervised oblique predictive clustering trees
    Stepišnik T.
    Kocev D.
    PeerJ Computer Science, 2021, 7 : 1 - 20
  • [10] Semi-supervised oblique predictive clustering trees
    Stepisnik, Tomaz
    Kocev, Dragi
    PEERJ COMPUTER SCIENCE, 2021,