共 50 条
Proliferating Levy Walkers and Front Propagation
被引:5
|作者:
Stage, H.
[1
]
Fedotov, S.
[1
]
Mendez, V.
[2
]
机构:
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Univ Autonoma Barcelona, Dept Fis, Fac Ciencies, Edifici Cc, Cerdanyola Del Valles 08193, Barcelona, Spain
基金:
英国工程与自然科学研究理事会;
关键词:
anomalous diffusion;
TRANSPORT-EQUATIONS;
SUBDIFFUSION;
WAVES;
D O I:
10.1051/mmnp/201611310
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We develop non-linear integro-differential kinetic equations for proliferating Levy walkers with birth and death processes. A hyperbolic scaling is applied directly to the general equations to get the Hamilton-Jacobi equations that will allow to determine the rate of front propagation. We found the conditions for switching, birth and death rates under which the propagation velocity reaches the maximum value, i.e. the walker's speed. In the strong anomalous case the death rate was found to influence the velocity of propagation to fall below the walker's maximum speed.
引用
收藏
页码:157 / 178
页数:22
相关论文