Minimal normal subgroups of dinilpotent groups

被引:1
|
作者
Robinson, DJS
Stonehewer, SE
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jabr.2000.8551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a finite group G is the product of two nilpotent subgroups A and B and if N is a minimal normal subgroup of G, then AN or BN is nilpotent. This result is extended to several classes of infinite groups. (C) 2000 Academic Press.
引用
收藏
页码:480 / 491
页数:12
相关论文
共 50 条
  • [21] On subgroups of minimal topological groups
    Uspenskij, Vladimir V.
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (14) : 1580 - 1606
  • [22] On minimal subgroups of finite groups
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) : 335 - 342
  • [23] MINIMAL SUBGROUPS WHICH ARE NORMAL
    VANDERWAALL, RW
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 285 : 77 - 78
  • [24] Minimal normal subgroups of transitive permutation groups of square-free degree
    Dobson, Edward
    Malnic, Aleksander
    Marusic, Dragan
    Nowitz, Lewis A.
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 373 - 385
  • [25] On second minimal subgroups of Sylow subgroups of finite groups
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Li, Yangming
    JOURNAL OF ALGEBRA, 2011, 342 (01) : 134 - 146
  • [26] Groups with various minimal conditions on subgroups
    Dixon M.R.
    Evans M.J.
    Smith H.
    Ukrainian Mathematical Journal, 2002, 54 (6) : 957 - 966
  • [27] Finite Groups with -Supplemented Minimal Subgroups
    Li, Baojun
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2060 - 2070
  • [28] A note on minimal coverings of groups by subgroups
    Bryce, RA
    Serena, L
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 159 - 168
  • [29] A note on minimal subgroups of finite groups
    Asaad, M
    BallesterBolinches, A
    Aguilera, MCP
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (08) : 2771 - 2776
  • [30] On minimal subgroups of finite groups (III)
    Li, SR
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (08) : 2453 - 2461