On subgroups of minimal topological groups

被引:46
|
作者
Uspenskij, Vladimir V. [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
topological group; uniformity; semigroup; idempotent; isometry; Urysohn metric space; roelcke compactification; unitary group;
D O I
10.1016/j.topol.2008.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological group is minimal if it does not admit a strictly coarser Hausdorff group topology. The Roelcke uniformity (or lower uniformity) on a topological group is the greatest lower bound of the left and right uniformities. A group is Roelcke-precompact if it is precompact with respect to the Roelcke uniformity. Many naturally arising non-Abelian topological groups are Roelcke-precompact and hence have a natural compactification. We use such compactifications to prove that some groups of isometries are minimal. In particular, if U-l is the Urysohn universal metric space of diameter 1, the group Iso(U-1) of all self-isometries of Ul is Roelcke- precompact, topologically simple and minimal. We also show that every topological group is a subgroup of a minimal topologically simple Roelcke-precompact group of the form Iso(M), where M is an appropriate non-separable version of the Urysohn space. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1580 / 1606
页数:27
相关论文
共 50 条