Topology error identification using normalized Lagrange multipliers

被引:101
|
作者
Clements, KA [1 ]
Costa, AS
机构
[1] Worcester Polytech Inst, Worcester, MA 01609 USA
[2] Univ Fed Santa Catarina, BR-66040900 Florianopolis, SC, Brazil
关键词
D O I
10.1109/59.667350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper Introduces a method for topology error identification based on the use of normalized Lagrange multipliers. The proposed methodology models circuit breakers as network switching branches: whose statuses are treated as operational constraints in the state estimation problem. The corresponding Lagrange multi]pliers are then normalized and used as a tool for topology error identification, in the same fashion as measurement normalized residuals are conventionally employed for analog bad data processing. Results of tests performed with the proposed algorithm for different types of topology errors are reported.
引用
收藏
页码:347 / 353
页数:7
相关论文
共 50 条
  • [31] BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS
    BARBOSA, HJC
    HUGHES, TJR
    NUMERISCHE MATHEMATIK, 1992, 62 (01) : 1 - 15
  • [32] Quantum dynamics of Lagrange multipliers
    Alvarez, Enrique
    Anero, Jesus
    Martin, Carmelo P.
    Velasco-Aja, Eduardo
    PHYSICAL REVIEW D, 2023, 108 (02)
  • [33] Contact dynamics with Lagrange multipliers
    Brunssen, Stephan
    Hueeber, Stefan
    Wohlmuth, Barbara
    IUTAM SYMPOSIUM ON COMPUTATIONAL METHODS IN CONTACT MECHANICS, 2007, 3 : 17 - +
  • [34] LAGRANGE MULTIPLIERS IN INTRINSIC ELASTICITY
    Ciarlet, Philippe G.
    Ciarlet, Patrick, Jr.
    Iosifescu, Oana
    Sauter, Stefan
    Zou, Jun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (04): : 651 - 666
  • [35] LAGRANGE MULTIPLIERS AND GRAVITATIONAL THEORY
    SAFKO, JL
    ELSTON, F
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) : 1531 - 1537
  • [36] Determination of eigenvectors with Lagrange multipliers
    Wooyong Han
    Dong-Won Jung
    Jungil Lee
    Chaehyun Yu
    Journal of the Korean Physical Society, 2021, 78 : 1018 - 1022
  • [37] Lagrange multipliers in vector optimization
    Breckner, WW
    Gopfert, A
    Sekatzek, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S525 - S526
  • [38] NORMALITY AND UNIQUENESS OF LAGRANGE MULTIPLIERS
    Cortez, Karla L.
    Rosenblueth, Javier F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 3169 - 3188
  • [39] PROPERTY OF TESTS BY LAGRANGE MULTIPLIERS
    MATHIEU, JR
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (10): : 683 - &
  • [40] CONVEX OPTIMIZATION AND LAGRANGE MULTIPLIERS
    BLAIR, CE
    MATHEMATICAL PROGRAMMING, 1978, 15 (01) : 87 - 91