On the existence and stability of minimizers in ferromagnetic nanowires

被引:3
|
作者
Harutyunyan, Davit [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
Nanowires; Magnetization reversal; Transverse wall; Vortex wall; Domain wall; THIN-FILMS; CONCERTINA PATTERN; EFFECTIVE DYNAMICS; NEEL WALLS; MICROMAGNETICS; MOTION;
D O I
10.1016/j.jmaa.2015.09.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study static 180 degree domain walls in infinite magnetic wires with bounded, Cl and rotationally symmetric cross sections. We prove an existence of global minimizers for the energy of micromagnetics for any bounded Cl cross sections. Under some asymmetry of cross sections we prove a stability result for the minimizers, namely, we show that vectors of micromagnetics having an energy close to the minimal one, must be H-1 close to the actual minimizer, which is itself close to the minimizer of the limit energy up to a rotation and a translation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1719 / 1739
页数:21
相关论文
共 50 条
  • [31] Circuits of ferromagnetic nanowires
    Bokoch, Sergiy M.
    Carbou, Gilles
    Labbe, Stephane
    Despreaux, Stephane
    NUMERISCHE MATHEMATIK, 2024, 156 (04) : 1511 - 1540
  • [32] Existence and non-existence of minimizers for Poincare-Sobolev inequalities
    Benguria, Rafael D.
    Vallejos, Cristobal
    Van Den Bosch, Hanne
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 59 (01)
  • [33] EXISTENCE AND REGULARITY OF MINIMIZERS FOR NONLOCAL ENERGY FUNCTIONALS
    Foss, Mikil D.
    Radu, Petronela
    Wright, Cory
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (11-12) : 807 - 832
  • [34] EXISTENCE OF MINIMIZERS FOR NONLEVEL CONVEX SUPREMAL FUNCTIONALS
    Ribeiro, Ana Margarida
    Zappale, Elvira
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) : 3341 - 3370
  • [35] Existence and structure of minimizers of least gradient problems
    Moradifam, Amir
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (03) : 1025 - 1037
  • [36] Conductance of ferromagnetic nanowires
    Mehrez, H
    Ciraci, S
    PHYSICAL REVIEW B, 1998, 58 (15): : 9674 - 9676
  • [37] Existence of uncertainty minimizers for the continuous wavelet transform
    Halvdansson, Simon
    Olsen, Jan-Fredrik
    Sochen, Nir
    Levie, Ron
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) : 1156 - 1172
  • [38] On the existence of elastic minimizers for initially stressed materials
    Riccobelli, D.
    Agosti, A.
    Ciarletta, P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2144):
  • [39] Scaling properties of functionals and existence of constrained minimizers
    Bellazzini, Jacopo
    Siciliano, Gaetano
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) : 2486 - 2507
  • [40] Existence of minimizers for a polyconvex energy in a crystal with dislocations
    Stefan Müller
    Mariapia Palombaro
    Calculus of Variations and Partial Differential Equations, 2008, 31 : 473 - 482