On the existence and stability of minimizers in ferromagnetic nanowires

被引:3
|
作者
Harutyunyan, Davit [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
Nanowires; Magnetization reversal; Transverse wall; Vortex wall; Domain wall; THIN-FILMS; CONCERTINA PATTERN; EFFECTIVE DYNAMICS; NEEL WALLS; MICROMAGNETICS; MOTION;
D O I
10.1016/j.jmaa.2015.09.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study static 180 degree domain walls in infinite magnetic wires with bounded, Cl and rotationally symmetric cross sections. We prove an existence of global minimizers for the energy of micromagnetics for any bounded Cl cross sections. Under some asymmetry of cross sections we prove a stability result for the minimizers, namely, we show that vectors of micromagnetics having an energy close to the minimal one, must be H-1 close to the actual minimizer, which is itself close to the minimizer of the limit energy up to a rotation and a translation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1719 / 1739
页数:21
相关论文
共 50 条
  • [21] Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires
    吴芳
    孟培雯
    罗康
    刘云飞
    阚二军
    Chinese Physics B, 2015, 24 (03) : 353 - 356
  • [22] Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires
    Wu Fang
    Meng Pei-Wen
    Luo Kang
    Liu Yun-Fei
    Kan Er-Jun
    CHINESE PHYSICS B, 2015, 24 (03)
  • [23] Existence Results for Minimizers of Parametric Elliptic Functionals
    Guido De Philippis
    Antonio De Rosa
    Francesco Ghiraldin
    The Journal of Geometric Analysis, 2020, 30 : 1450 - 1465
  • [24] Existence of parabolic minimizers on metric measure spaces
    Collins, Michael
    Heran, Andreas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 : 56 - 83
  • [25] On the existence and uniqueness of minimizers for a class of integral functionals
    Crasta, G
    Malusa, A
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (02): : 129 - 150
  • [26] Existence and boundedness of minimizers of a class of integral functionals
    Mercaldo, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 125 - 139
  • [27] EXISTENCE OF MINIMIZERS FOR SOME QUASILINEAR ELLIPTIC PROBLEMS
    Candela, Anna Maria
    Salvatore, Addolorata
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (12): : 3335 - 3345
  • [28] On the existence and uniqueness of minimizers for a class of integral functionals
    Graziano Crasta
    Annalisa Malusa
    Nonlinear Differential Equations and Applications NoDEA, 2005, 12 : 129 - 150
  • [29] Existence of minimizers for a polyconvex energy in a crystal with dislocations
    Mueller, Stefan
    Palombaro, Mariapia
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (04) : 473 - 482
  • [30] Magnetoresistance of ferromagnetic nanowires
    Wegrowe, JE
    Kelly, D
    Franck, A
    Gilbert, SE
    Ansermet, JP
    PHYSICAL REVIEW LETTERS, 1999, 82 (18) : 3681 - 3684