Automatic region-of-interest segmentation and registration of dynamic contrast-enhanced images of colorectal tumors

被引:4
|
作者
Hou, Zujun [1 ]
Wang, Yue [2 ]
Thng, Choon Hua [3 ,4 ]
Ng, Quan-Sing [5 ]
Goh, Vicky [6 ]
Koh, Tong San [3 ,4 ]
机构
[1] ASTAR, Inst Infocomm Res, Dept Neural & Biomed Technol, Singapore 138632, Singapore
[2] ASTAR, Inst Infocomm Res, Dept Visual Comp, Singapore 138632, Singapore
[3] Natl Canc Ctr, Dept Oncol Imaging, Singapore 169610, Singapore
[4] Duke NUS Grad Med Sch, Ctr Quantitat Biol, Singapore 169547, Singapore
[5] Natl Canc Ctr, Dept Med Oncol, Singapore 169610, Singapore
[6] Kings Coll London, Dept Canc Imaging, Div Imaging & Biomed Engn, London SE1 7EH, England
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2014年 / 59卷 / 23期
关键词
DCE imaging; image segmentation; image registration; shape encoding; B-splines;
D O I
10.1088/0031-9155/59/23/7361
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Dynamic contrast-enhanced (DCE) images can be acquired at multiple time points and multiple slice locations of a tumor. Image segmentation and registration are important preprocessing steps that can improve subsequent analysis of DCE images by kinetic modeling. An automatic system for region-of-interest segmentation and registration of DCE images is presented. Tissue segmentation is performed using a combination of thresholding and morphological operations, and further refined using shape information from consecutive images. The segmented regions are subsequently registered based on a mutual information method that accounts for possible tissue movement between slices. The proposed segmentation and registration methods are applied on actual DCE CT datasets to illustrate feasibility of practical implementation in the clinic.
引用
收藏
页码:7361 / 7381
页数:21
相关论文
共 50 条
  • [41] Analysis of contrast-enhanced dynamic MR images of the lung
    Torheim, G
    Amundsen, T
    Rinck, PA
    Haraldseth, O
    Sebastiani, G
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (04) : 577 - 587
  • [42] Automatic Segmentation of Pancreatic Tumors Using Deep Learning on a Video Image of Contrast-Enhanced Endoscopic Ultrasound
    Iwasa, Yuhei
    Iwashita, Takuji
    Takeuchi, Yuji
    Ichikawa, Hironao
    Mita, Naoki
    Uemura, Shinya
    Shimizu, Masahito
    Kuo, Yu-Ting
    Wang, Hsiu-Po
    Hara, Takeshi
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (16)
  • [43] Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images
    Rusko, Laszlo
    Bekes, Gyoergy
    Fidrich, Marta
    MEDICAL IMAGE ANALYSIS, 2009, 13 (06) : 871 - 882
  • [44] On the detection of regions-of-interest in dynamic contrast-enhanced MRI
    Raba, David
    Peracaula, Marta
    Marti, Robert
    Marti, Joan
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2007, 4477 : 129 - +
  • [45] The choice of region of interest measures in contrast-enhanced magnetic resonance image characterization of experimental breast tumors
    Preda, A
    Turetschek, K
    Daldrup, H
    Floyd, E
    Novikov, V
    Shames, DM
    Roberts, TPL
    Carter, WO
    Brasch, RC
    INVESTIGATIVE RADIOLOGY, 2005, 40 (06) : 349 - 354
  • [46] Measuring sparse temporal-variation for accurate registration of dynamic contrast-enhanced breast MR images
    Zheng, Yuanjie
    Wei, Benzheng
    Liu, Hui
    Xiao, Rui
    Gee, James C.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 46 : 73 - 80
  • [47] SUBTRACTION TECHNIQUE FOR CONTRAST-ENHANCED MR IMAGES OF MUSCULOSKELETAL TUMORS
    HANNA, SL
    LANGSTON, JW
    GRONEMEYER, SA
    FLETCHER, BD
    MAGNETIC RESONANCE IMAGING, 1990, 8 (03) : 213 - 215
  • [48] AUTOMATIC INFERIOR VENA CAVA SEGMENTATION IN CONTRAST-ENHANCED CT VOLUMES
    Lefevre, Thierry
    Mory, Benoit
    Ardon, Roberto
    Sanchez-Castro, Javier
    Yezzi, Anthony
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 420 - 423
  • [49] AUTOMATIC SEMANTIC SEGMENTATION OF CERVICAL CANCER BASED ON DYNAMIC CONTRAST-ENHANCED MRI AND FULLY CONVOLUTIONAL NETWORKS
    Xia, Shaojun
    Zhu, Hai-Tao
    Zhao, Bo
    Cao, Kun
    Li, Xiao-Ting
    Sun, Ying-Shi
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2022, 32 : A13 - A13
  • [50] Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR)
    Melbourne, A.
    Atkinson, D.
    White, M. J.
    Collins, D.
    Leach, M.
    Hawkes, D.
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (17): : 5147 - 5156