Automatic region-of-interest segmentation and registration of dynamic contrast-enhanced images of colorectal tumors

被引:4
|
作者
Hou, Zujun [1 ]
Wang, Yue [2 ]
Thng, Choon Hua [3 ,4 ]
Ng, Quan-Sing [5 ]
Goh, Vicky [6 ]
Koh, Tong San [3 ,4 ]
机构
[1] ASTAR, Inst Infocomm Res, Dept Neural & Biomed Technol, Singapore 138632, Singapore
[2] ASTAR, Inst Infocomm Res, Dept Visual Comp, Singapore 138632, Singapore
[3] Natl Canc Ctr, Dept Oncol Imaging, Singapore 169610, Singapore
[4] Duke NUS Grad Med Sch, Ctr Quantitat Biol, Singapore 169547, Singapore
[5] Natl Canc Ctr, Dept Med Oncol, Singapore 169610, Singapore
[6] Kings Coll London, Dept Canc Imaging, Div Imaging & Biomed Engn, London SE1 7EH, England
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2014年 / 59卷 / 23期
关键词
DCE imaging; image segmentation; image registration; shape encoding; B-splines;
D O I
10.1088/0031-9155/59/23/7361
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Dynamic contrast-enhanced (DCE) images can be acquired at multiple time points and multiple slice locations of a tumor. Image segmentation and registration are important preprocessing steps that can improve subsequent analysis of DCE images by kinetic modeling. An automatic system for region-of-interest segmentation and registration of DCE images is presented. Tissue segmentation is performed using a combination of thresholding and morphological operations, and further refined using shape information from consecutive images. The segmented regions are subsequently registered based on a mutual information method that accounts for possible tissue movement between slices. The proposed segmentation and registration methods are applied on actual DCE CT datasets to illustrate feasibility of practical implementation in the clinic.
引用
收藏
页码:7361 / 7381
页数:21
相关论文
共 50 条
  • [21] Automatic Left Atrial Wall Segmentation from Contrast-Enhanced CT Angiography Images
    Tao, Qian
    Shahzad, Rahil
    Berendsen, Floris F.
    van der Geest, Rob J.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: IMAGING AND MODELLING CHALLENGES, 2016, 2017, 10124 : 220 - 227
  • [22] Automatic Detection of Arterial Voxels in Dynamic Contrast-Enhanced MR Images of the Brain
    Chan, Sze Liang Stanley
    Gal, Yaniv
    2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA), 2012,
  • [23] Automatic selection of arterial input function on dynamic contrast-enhanced MR images
    Peruzzo, Denis
    Bertoldo, Alessandra
    Zanderigo, Francesca
    Cobelli, Claudio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E148 - E157
  • [24] Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
    Anderson, Brian M.
    Rigaud, Bastien
    Lin, Yuan-Mao
    Jones, A. Kyle
    Kang, HynSeon Christine
    Odisio, Bruno C.
    Brock, Kristy K.
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [25] Automatic segmentation of chromatographic images for region of interest delineation
    Mendonca, Ana M.
    Sousa, Antonio V.
    Sa-Miranda, M. Clara
    Campilho, Aurelio C.
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [26] Automatic Region-of-Interest Segmentation and Pathology Detection in Magnetically Guided Capsule Endoscopy
    Mewes, Philip W.
    Neumann, Dominik
    Licegevic, Oleg
    Simon, Johannes
    Juloski, Aleksandar Lj.
    Angelopoulou, Elli
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III, 2011, 6893 : 141 - +
  • [27] Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning
    Luo, Xiao
    Li, Peiwen
    Chen, Hongyi
    Zhou, Kun
    Piao, Sirong
    Yang, Liqin
    Hu, Bin
    Geng, Daoying
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (06):
  • [28] Robust Segmentation of Mass-lesions in Contrast-Enhanced Dynamic Breast MR Images
    Meinel, Lina A.
    Buelow, Thomas
    Huo, Dezheng
    Shimauchi, Akiko
    Kose, Ursula
    Buurman, Johannes
    Newstead, Gillian
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (01) : 110 - 119
  • [29] Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images
    Prevost, Raphael
    Cohen, Laurent D.
    Correas, Jean-Michel
    Ardon, Roberto
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [30] A method for automatic liver segmentation from multi-phase contrast-enhanced CT images
    Yuan, Rong
    Luo, Ming
    Wang, Shaofa
    Wang, Luyao
    Xie, Qingguo
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035