Ensemble climate predictions using climate models and observational constraints

被引:48
|
作者
Stott, Peter A. [1 ]
Forest, Chris E.
机构
[1] Univ Reading, Hadley Ctr Climate Change, Reading Unit, Reading RG6 6BB, Berks, England
[2] MIT, Joint Program Sci & Policy Global Change, Cambridge, MA 02139 USA
关键词
climate change; attribution; prediction; ensembles; uncertainty; probability;
D O I
10.1098/rsta.2007.2075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two different approaches are described for constraining climate predictions based on observations of past climate change. The first uses large ensembles of simulations from computationally efficient models and the second uses small ensembles from state-of-the-art coupled ocean atmosphere general circulation models. Each approach is described and the advantages of each are discussed. When compared, the two approaches are shown to give consistent ranges for future temperature changes. The consistency of these results, when obtained using independent techniques, demonstrates that past observed climate changes provide robust constraints on probable future climate changes. Such probabilistic predictions are useful for communities seeking to adapt to future change as well as providing important information for devising strategies for mitigating climate change.
引用
收藏
页码:2029 / 2052
页数:24
相关论文
共 50 条
  • [31] Ensemble of sea ice initial conditions for interannual climate predictions
    Guemas, Virginie
    Doblas-Reyes, Francisco J.
    Mogensen, Kristian
    Keeley, Sarah
    Tang, Yongming
    CLIMATE DYNAMICS, 2014, 43 (9-10) : 2813 - 2829
  • [33] Ensemble evaluation and projection of climate extremes in China using RMIP models
    Niu, Xiaorui
    Wang, Shuyu
    Tang, Jianping
    Lee, Dong-Kyou
    Gutowski, William
    Dairaku, Koji
    McGregor, John
    Katzfey, Jack
    Gao, Xuejie
    Wu, Jia
    Hong, Song-you
    Wang, Yuqing
    Sasaki, Hidetaka
    Fu, Congbin
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (04) : 2039 - 2055
  • [34] On the clustering of climate models in ensemble seasonal forecasting
    Yuan, Xing
    Wood, Eric F.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [35] Nonlinear Ensemble Parameter Perturbation for Climate Models
    Yin, Xudong
    Liu, Juanjuan
    Wang, Bin
    JOURNAL OF CLIMATE, 2015, 28 (03) : 1112 - 1125
  • [36] Model structure in observational constraints on transient climate response
    Millar, Richard J.
    Otto, Alexander
    Forster, Piers M.
    Lowe, Jason A.
    Ingram, William J.
    Allen, Myles R.
    CLIMATIC CHANGE, 2015, 131 (02) : 199 - 211
  • [37] Observational constraints on parameter estimates for a simple climate model
    Bodman, Roger W.
    Karoly, David J.
    Wijffels, Susan
    Enting, Ian G.
    AUSTRALIAN METEOROLOGICAL AND OCEANOGRAPHIC JOURNAL, 2012, 62 (04): : 277 - 285
  • [38] Model structure in observational constraints on transient climate response
    Richard J. Millar
    Alexander Otto
    Piers M. Forster
    Jason A. Lowe
    William J. Ingram
    Myles R. Allen
    Climatic Change, 2015, 131 : 199 - 211
  • [39] Pluto's climate modeled with new observational constraints
    Hansen, C. J.
    Paige, D. A.
    Young, L. A.
    ICARUS, 2015, 246 : 183 - 191
  • [40] Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China
    Ma, Feng
    Ye, Aizhong
    Duan, Qingyun
    CLIMATE DYNAMICS, 2019, 53 (12) : 7447 - 7460