Ensemble climate predictions using climate models and observational constraints

被引:48
|
作者
Stott, Peter A. [1 ]
Forest, Chris E.
机构
[1] Univ Reading, Hadley Ctr Climate Change, Reading Unit, Reading RG6 6BB, Berks, England
[2] MIT, Joint Program Sci & Policy Global Change, Cambridge, MA 02139 USA
关键词
climate change; attribution; prediction; ensembles; uncertainty; probability;
D O I
10.1098/rsta.2007.2075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two different approaches are described for constraining climate predictions based on observations of past climate change. The first uses large ensembles of simulations from computationally efficient models and the second uses small ensembles from state-of-the-art coupled ocean atmosphere general circulation models. Each approach is described and the advantages of each are discussed. When compared, the two approaches are shown to give consistent ranges for future temperature changes. The consistency of these results, when obtained using independent techniques, demonstrates that past observed climate changes provide robust constraints on probable future climate changes. Such probabilistic predictions are useful for communities seeking to adapt to future change as well as providing important information for devising strategies for mitigating climate change.
引用
收藏
页码:2029 / 2052
页数:24
相关论文
共 50 条
  • [21] Observational challenges in evaluating climate models
    Mat Collins
    Krishna AchutaRao
    Karumuri Ashok
    Satyendra Bhandari
    Ashis K. Mitra
    Satya Prakash
    Rohit Srivastava
    Andrew Turner
    Nature Climate Change, 2013, 3 : 940 - 941
  • [22] Extraseasonal ensemble numerical predictions of winter climate over China
    LANG Xianmei
    Chinese Science Bulletin, 2003, (19) : 2121 - 2125
  • [23] Extraseasonal ensemble numerical predictions of winter climate over China
    Lang, XM
    Wang, HJ
    Jiang, DB
    CHINESE SCIENCE BULLETIN, 2003, 48 (19): : 2121 - 2125
  • [24] An assessment of a multi-model ensemble of decadal climate predictions
    Bellucci, A.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, M.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, K.
    Yang, S.
    CLIMATE DYNAMICS, 2015, 44 (9-10) : 2787 - 2806
  • [25] Decadal climate predictions improved by ocean ensemble dispersion filtering
    Kadow, C.
    Illing, S.
    Kroener, I.
    Ulbrich, U.
    Cubasch, U.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2017, 9 (02) : 1138 - 1149
  • [26] Ensemble of sea ice initial conditions for interannual climate predictions
    Virginie Guemas
    Francisco J. Doblas-Reyes
    Kristian Mogensen
    Sarah Keeley
    Yongming Tang
    Climate Dynamics, 2014, 43 : 2813 - 2829
  • [27] Validating Predictions from Climate Envelope Models
    Watling, James I.
    Bucklin, David N.
    Speroterra, Carolina
    Brandt, Laura A.
    Mazzotti, Frank J.
    Romanach, Stephanie S.
    PLOS ONE, 2013, 8 (05):
  • [28] Values and Uncertainties in the Predictions of Global Climate Models
    Winsberg, Eric
    KENNEDY INSTITUTE OF ETHICS JOURNAL, 2012, 22 (02) : 111 - 137
  • [29] Ensemble flood predictions for River Thames under climate change
    Yurui Fan
    National Science Open, 2024, 3 (01) : 28 - 48
  • [30] An assessment of a multi-model ensemble of decadal climate predictions
    A. Bellucci
    R. Haarsma
    S. Gualdi
    P. J. Athanasiadis
    M. Caian
    C. Cassou
    E. Fernandez
    A. Germe
    J. Jungclaus
    J. Kröger
    D. Matei
    W. Müller
    H. Pohlmann
    D. Salas y Melia
    E. Sanchez
    D. Smith
    L. Terray
    K. Wyser
    S. Yang
    Climate Dynamics, 2015, 44 : 2787 - 2806