Fused lasso regression for identifying differential correlations in brain connectome graphs

被引:4
|
作者
Yu, Donghyeon [1 ]
Lee, Sang Han [2 ,3 ]
Lim, Johan [4 ]
Xiao, Guanghua [5 ]
Craddock, Richard Cameron [6 ]
Biswal, Bharat B. [7 ]
机构
[1] Inha Univ, Dept Stat, Incheon, South Korea
[2] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, 140 Old Orangeburg Rd, Orangeburg, NY 10962 USA
[3] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10003 USA
[4] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA
[6] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
[7] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
基金
新加坡国家研究基金会;
关键词
fMRI; functional connectivity; fusion penalty; Gaussian graphical model; partial correlation; penalized least squares; precision matrix; INVERSE COVARIANCE ESTIMATION; PRECISION MATRIX ESTIMATION; FUNCTIONAL CONNECTIVITY; VARIABLE SELECTION; ELASTIC NET; NETWORKS; MRI; MINIMIZATION; INSIGHTS; DISEASE;
D O I
10.1002/sam.11382
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a procedure to find differential edges between 2 graphs from high-dimensional data. We estimate 2 matrices of partial correlations and their differences by solving a penalized regression problem. We assume sparsity only on differences between 2 graphs, not graphs themselves. Thus, we impose an (2) penalty on partial correlations and an (1) penalty on their differences in the penalized regression problem. We apply the proposed procedure in finding differential functional connectivity between healthy individuals and Alzheimer's disease patients.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 50 条
  • [1] Variance estimation in graphs with the fused lasso
    Padilla, Oscar Hernan Madrid
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 45
  • [2] SCALABLE FUSED LASSO SVM FOR CONNECTOME-BASED DISEASE PREDICTION
    Watanabe, Takanori
    Scott, Clayton D.
    Kessler, Daniel
    Angstadt, Michael
    Sripada, Chandra S.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Adaptive fused LASSO in grouped quantile regression
    Ciuperca G.
    Journal of Statistical Theory and Practice, 2017, 11 (1) : 107 - 125
  • [4] Functional logistic regression with fused lasso penalty
    Kim, Hyojoong
    Kim, Heeyoung
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2982 - 2999
  • [5] Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression
    Walker, Marissa
    Agnew, Alfonso F.
    Bidler, Jeffrey
    Lundgren, Andrew
    Macedo, Alexandra
    Macleod, Duncan
    Massinger, T. J.
    Patane, Oliver
    Smith, Joshua R.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (22)
  • [6] Double fused Lasso penalized LAD for matrix regression
    Li, Mei
    Kong, Lingchen
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 357 : 119 - 138
  • [7] Bayesian Fused Lasso Regression for Dynamic Binary Networks
    Betancourt, Brenda
    Rodriguez, Abel
    Boyd, Naomi
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 840 - 850
  • [8] Brain Graphs: Graphical Models of the Human Brain Connectome
    Bullmore, Edward T.
    Bassett, Danielle S.
    ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, 2011, 7 : 113 - 140
  • [9] Delayed correlations improve the reconstruction of the brain connectome
    Mijalkov, Mite
    Pereira, Joana B.
    Volpe, Giovanni
    PLOS ONE, 2020, 15 (02):
  • [10] Fused graphical lasso for brain networks with symmetries
    Ranciati, Saverio
    Roverato, Alberto
    Luati, Alessandra
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (05) : 1299 - 1322